DREAM AFRICA SCHOOLS

MTC LESSON NOTES

FOR TERM I, 2019

P.4.

SETS

Review of types of sets.

A set is a collection of well defined members or elements.

TYPES OF SETS (Review)

 Empty set or null set. This is a set without any members.

Symbol: $\{ \}$ or Φ

e.g. Pupils in a class without heads.

2. Equivalent sets

These are sets with the same number of members but the members may be different.

Symbol: \Leftrightarrow e.g. A = {b,c,d,e} B = {0, 1, 2, 3}

set A is equivalent to set B A \Leftrightarrow B

N.B. <≠> means "not equivalent to"

3. Equal sets

These are sets with the same number of members which are exactly the same.

Symbol: =

e.g. K = {a, b, c, c} L = {b, a, c}

Set K is equal to set L because they have the same number and the same members.

K = L

4. Disjoint sets

These are sets without any common members.
e.g. M = {6, 7, 8}

N = {2, 3, 4, 5}

Set M and set N don't have any common members.

- REF: Primary MTC Bk 4 pg 1
 - Understanding MTC bk 4 pg 1
 - Primary MTC Bk 4 pg 9
 - Primary school MTC bk 4 pg 1

UNION, INTERSECTION AND NUMBER OF MEMBERS

UNION SETS (Review) This is a set which contains all the members in the given sets.

N.B. Common members are written once.

Symbol: U

e.g. Set $P = \{a, e, , o, u\}$ $Q = \{2, 4, 6, 8\}$

Set P U Q = $\{a, e, , o, u, 2, 4, 6, 8\}$

INTERSECTION SET (Review)

This a set with the common members of the given set.

Symbol: "∩"

e.g. $P = \{1, 2, 3, 4, 5\}$ B = $\{0, 1, 3, 4, 5\}$ Find:

a) $P \cap B = \{2, 3, 4, 5\}$

b) $P \cup B = \{0, 1, 2, 3, 4, 5\}$

5. A = {Banana, Orange} B = {Apple, Orange}

Find: a) $A \cap B = \{ Orange \}$

b) A U B = { Banana, Orange, Apple }

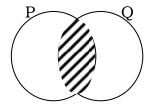
NUMBER OF MEMBERS (Review)

Symbol: n()

Examples

 P = { a, b, c} How many members are in set P.

n(P) = 3 members.

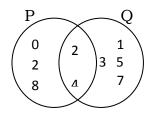

- 2. M = { days of the week }
 Find n(M)
 - M = {Mon, Tue, Wed, Thur, Fri, Sat, Sub}

Find: n(M) = 7

REF: - Understanding
Primary MTC bk 4 pg 14 - 15
Kenya Primary MTC Bk 4 4 pg 15 - 16

VENN DIAGRAM (Review)

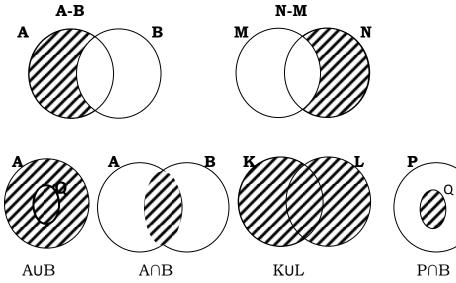
Representing information on a Venn diagram:

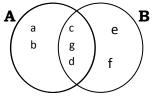


P∩Q

Members Of Set P only Members of Set Q only Example:

Given	$\{0, 2, 4, 6, 8\}$ $\{1, 2, 3, 4, 5, 78\}$
Find: P∩Q A∪B	{ 2, 4} {0, 1, 2, 3, 4, 5, 6, 7, 8 }

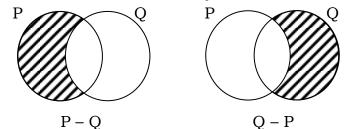

Represent the sets on a Venn diagram.


REF: MK bk 5 Pg 12 Primary MTC for Uganda bk 4 Pg 60 – 62 MK Bk 4 Pg 11 – 14

Shading Venn Diagrams (Review)

Example:

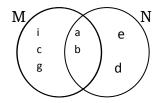
Getting information from a Venn Diagram (Review)


List down all members of Set; A = { a, b, c, d, g} B = { c, g, d, e, f} A∩B = {c, d, g}

A U B = { a, b, c, d, g, e, f } $n(A \cap B) = 3$ members

REF: MK Bk 5 pg 7 MK Bk 4 pgs 11 – 14

Difference of sets (Review)


P - Q means members of set P which are not in Set Q, that is, members found in Set P only.

Example:

Given: $P = \{2, 3, 4, 6, 8, 9\}$ $Q = \{1. 2, 5, 6, 7, 10\}$ Find: $P - Q = \{3, 4, 8, 9\}$ $Q - P = 1, 5, 7, 10\}$

Example II

Find: $M - N = \{i, c, g\}$

N-M = $\{d, e\}$

SUBSETS

A subset is a small set got from the main set.

Symbol: "C"

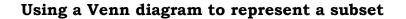
"¢" means not a subset of.

Example:

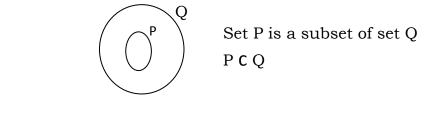
Given; E = {all pupils in P.4} K = { all boys in P.4} B = {all girls in P.4}

Set B and set K are subsets of set E

Example

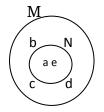

If:	D	=	$\{1, 2, 3, 4\}$
	Т	=	{2, 4}
	S	=	{1, 3}
	Κ	=	{5, 6}
	(T C I	subse	

K is not a subset of D (K ¢ D)

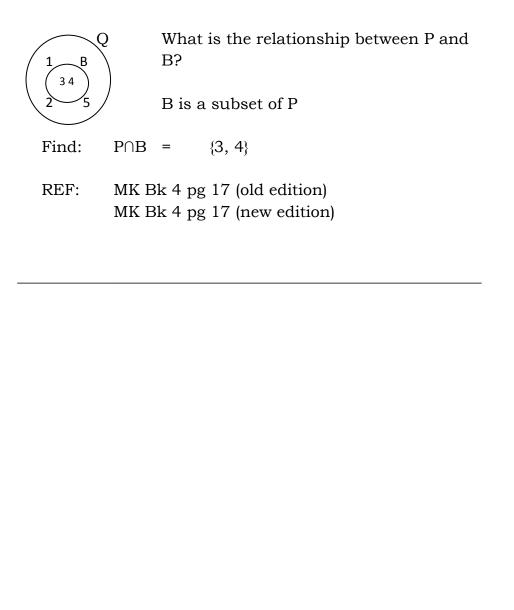

Given: $B = \{s,t,v\}$ Form subsets from set B

 $\{\ s\ \},\ \{\ t\ \},\ \{\ v\ \},\ \{\ s,\ t\},\ \{s,\ t,\ v\},\ \{\}$

N.B. - An empty set is a subset of the main set.- A set itself is a subset of that set.



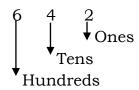
Using a Venn diagram to represent subsets.



Given: M = {a, b, c, d, e} N = {a, e}

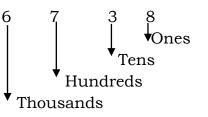
Represent the sets on a Venn diagram.

Find: $M \cap N = \{a, e\}$ $M \cup N = \{a, b, c, d, e\}$ $n(M \cup N)$ 5 Members


NUMERACY Whole Numbers

Numeral	Hundred Thousands	Ten thousands	Thousands	Hundreds	Tens	Ones
7041			7	0	4	1
24,678		2	4	6	7	8
132,407	1	3	2	4	0	7

Place value and value of whole numbers (Review)


Finding the place value of the given digits.

What is the place value of 4 in 642?

:. The place value of 4 is Tens.

Find the place value of each digit in 6738.

- The place value of 6 is Thousands
 The place value of 7 is Hundreds
 The place value of 3 is Tens
 The place value of 8 is Ones
- REF: Primary School MTC Bk 4 pg 8
 - Learning MTC Bk 4 pg 5
 - MK Bk 4 pg 20 (Old edition)

Value of wholes(Review)

Value = digit x place value

Find the value of each of the digits in 672

H T O

$$6 7 2$$

 $7 x 10 = 2$
 $7 x 10 = 70$
 $6 x 100 = 600$

Find the value of 0 in 6042

What is the value of 2 in 432?

H T O 4 3 2 $\checkmark 2 \times 1 = 2$

REF: MK Bk 4 pg 20 Learning MTC Bk 4 pg 6 Primary Science MTC Bk 4 pg 8

Application of values and place values

Example:

Find the sum of the value of 2 and 3 in the number 623.

H T O
6 2 3

$$\downarrow$$
 \downarrow $3 \times 1 = 3$
 $2 \times 10 = +20$
 23

What is the sum of the place value of 6 and 2 in the number 632?

H T O

$$6 \ 3 \ 2$$

 $4 \ 0 \text{nes} = 1$
Hundreds $= + \frac{100}{101}$

Find the product of the value of 2 and place value of 3 in 362.

H T O

$$3 \stackrel{6}{\downarrow} 2 \times 1 = 2$$

Hundreds = 100
 $= 2 \times 100$
 $= 200$

The place value of 2 is tens. What is its value.

Value	=	Digit x Place value
	=	2 x 10
	=	20

Writing whole numbers in words(Review)-up to thousands

1. Write 6438 in words.

Thousands	Hundreds	Units
6	4	38

6438 \rightarrow Six thousand four hundred thirty eight.

2. Write 14,008 in words

Thousands	Hundreds	Units
14	0	08

14,008 \rightarrow Fourteen thousand eight.

3. Express 240,402 in words

Thousands	Hundreds	Units
240	4	02

240,402 → Two hundred forty thousand four hundred two.

REF: MK Bk 4 pg 22 Learning MTC Bk 4 pg 6 Understanding MTC Bk 4 pg 11

<u>Writing in figures</u>(Review)

Write "three thousand six hundred in figures".

Three thousand3000Six hundred+6003600

Write in figures; "Sixty thousand five hundred twenty.

Sixty thousand60000Five hundred500Twenty $\frac{+ 20}{60,520}$

REF: Understanding MTC bk 4 pg 13 Primary School MTC BK 4 PG 8 Learning MTC bk 4 pg 6 MK Bk 4 pg 23

Writing numerals in expanded form(Review)

Expand 3485 using place values

$$3485 = (3 \times 1000) + (4 \times 100) + (8 \times 10) + (5 \times 1)$$

Expand 3485 using values 3485 = 3000 + 400 + 80 + 5

Expand: 46,246 46,246 = 40,000 + 6000 + 200 + 40 + 5

REF: - MK Bk 4 pg 23

- Learning MTC Bk 4 pg 6
- Understanding MTC Bk 4 pg 14

Writing the expanded numbers in short. (Review)

Find the number which has been expanded to get; 1. $4000 \ge 200 \ge 40 \ge 7$ 200

 $\begin{array}{r} 4 \\ 4 \\ + \\ \overline{7} \\ 4 \\ 3 \\ 4 \\ 7 \end{array}$

2.
$$(5 \ge 100) + (6 \ge 1000) + (4 \ge 1)$$

 $500 + 6000 + 4$
 $6 = 0 = 0$
 ± 4
 $6 = 5 = 0 = 0$
 $\frac{+ 4}{6 = 5 = 0 = 4}$
3. $(9 \ge 10000) + (4 \ge 1000) + (7 \ge 10)$
 $90000 + 4000 + 70$

- 90000 + 4000 +90000 +4000 + $<math>\frac{+ 70}{94070}$
- REF: Learning MTC Bk 4 pg 6 - Understanding MTC bk 4 pg 4

ROMAN NUMBERALS (Review) - up to one hundred.

Basic Roman Numerals are;

1 = I	50 = L	1000 = M
5 = V	100 = C	
10 = X	500 = D	

Roman numerals from 1 to 1000

Hindu Arabic	Roman numeral	Hindu Arabic	Roman numeral
1	Ι	8	VIII
2	II	9	IX
3	III	10	Х
4	IV	50	L
5	V	100	C
6	VI	500	D
7	VII	1000	М

Roman numerals got by repeating 1 and X;

Examples:	2	=	1 + 1	=	II
	3	=	1 + 1 + 1	=	III
	20	=	10 + 10	=	XX
	30	=	10+10+10	=	XXX
	300	=	100+100+1	=00	CCC

Roman numerals got by adding.

6	=	5 + 1	7	=	5 + 2
	=	V + I		=	V + II
	=	VI		=	VII

60	= = =	50 + 10 L + X LX	700	= = =	500 + 200 D + CC DCC	Expressing Ro numbers.	man nu	imerals into Hindu Arabic
			. 6			Convert the fol	lowing t	o Hindu Arabic numerals:
		merals got by subtraction	ng iro	<u>m 5,</u>	<u>50, 100,</u>			
<u>500</u>	and 1	<u>1000:</u>				1. XIV	=	X + IV
							=	10 + 4
4	=	(1 subtracted from 5)					=	14
	=	IV						
						2. XXXIX	=	XXX + IX
						2	=	30 + 9
40	_	(10 apply a stad from E0)					=	39
40	=	(10 subtracted from 50)						
	=	XL				3. XLV	=	XL + V
						0. 7117	=	40 + 5
90	=	(10 subtracted from 100	D)				=	45
	=	XC						
						4. XCVIII	=	XC + VIII
400	=	(100 subtracted from 50	00)			1. 7000111	=	90 + 8
	=	CD	,				=	98
000	_	(100 aubtre at a frage 10				5. DCCVII	=	DCC + VII
900	=	(100 subtracted from 10	100)			0. 000011	=	700 + 7
	=	СМ					=	707
								101
REF:	MK E	3k 4 pg 32				REF: - MK Bk	4 pg 34	
	Prim	ary MTC for Uganda Bk 4	⊦ pg 14	4-17		- Primary	7 MTC fo	or Uganda Bk 4 pg 17
						Topical questi	ons:	MK Bk 4 pg 35

OPERATION ON NUMBERS

Addition:

Words used in addition include; Sum, Total, Increase, Altogether, Add, e.t.c.

Examples:

1. Find the sum of;

11889		199322
+4425	-	+ 52614
a) 7464	b)	$1\ 4\ 6\ 7\ 0\ 8$

- 2. There are 469 goats, 943 cows and 6401 chicken on the farm. How many animals are there altogether?
 - 4 6 9 9 4 3 <u>+ 6 4 0 1</u> **7 8 1 3**
- :. There are 7813 animals altogether.
- REF: Primary MTC for Uganda Bk 4 pg 23 - MK Bk 4 pg 38
 - Primary School MTC bk 4 pg 14

Subtraction of wholes

Words used include; **Reduce, Decrease, Difference, e.t.c.** 1. Subtract:

3700	<u>21820</u>	9
<u>- 4732</u>	- <u>31465</u>	8
a) 8432	b) 53286	7

- 2. Subtract 94 from 342. 3 4 2 <u>- 9 4</u> **2 4 8**
- 3. What is the difference of 143 and 36?
 - 143 - <u>36</u> **107**
- 4. Okot had Shs. 630. He bought a toy car for Shs. 560. How much money remained?
 - Sh. 630
 - <u>Sh. 560</u>
 - <u>Sh. 070</u>
- REF: Primary MTC Bk 4 pg 30
 Primary MTC for Uganda bk 4 pg 20-32
 Understanding MTC Bk 4 pg 18-25

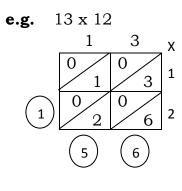
<u>Multiplication of wholes.</u>

Multiplying of a 3/2 digit number by 1 digit number.

	26	<u>172</u>		<u>600</u>
	<u>x 2</u>	<u>x 4</u>		<u>x 5</u>
1.	1 3	2. 43	3.	12 0

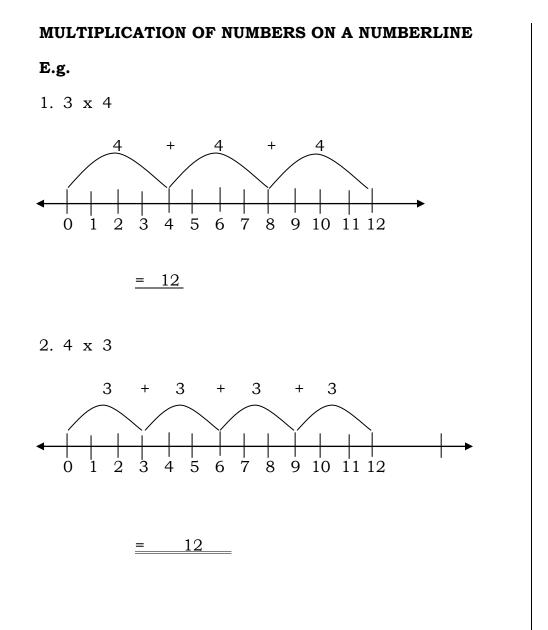
REF: Primary MTC for Uganda bk 4 pg 36 MK Bk 4 pg 46

Mu	ltiplying n	umbers b	by 10 a :	nd 20.	
2.	4 2	2.	54	3.	32
	<u>x 1 0</u>	2	<u>c10</u>		<u>x 2 0</u>
	<u>420</u>	5	<u>540</u>		<u>640</u>


REF: MK bk 4 pg 50

Multiplying 2-digit numbers by 2 digit numb	ers
---	-----

1. 13	OR;	1 3
x 1 2		$1 2 \rightarrow 10 + 2$
026		(13 x 10) + (13 x 2)
<u>130</u>		30 + 26
<u>156</u>		130
		+26
		<u>156</u>


2. 4 5	4 5	
<u>x 1 2</u>	x 1 2 →	10 + 2
090	45 x 10	450
<u>450</u>	45 x 2	+90
<u>540</u>		<u>540</u>

Multiplying using lattice method:

= 156

REF: Primary MTC for Uganda bk 4 pg 40 MK Bk 4 pg 50 Understanding MTC BK 4 pg 26-30

Divisions of 3 digit numbers by one digit

Use of long division

Exp: 1	468÷2	
_2 x 2 2x3= 4x2=	0.0	$\begin{array}{c ccc} x & 2 \\ 0 & 0 \\ 1 & 2 \\ 2 & 4 \\ \hline 3 & 6 \\ 4 & 8 \\ \hline 5 & 10 \\ 6 & 12 \\ 7 & 14 \\ 8 & 16 \\ \end{array}$
		9 18
Exp: 2	Share 570/= ar	nong 5 girls
	114	<u>x 2</u>

	4	X	4
5 5 7	0	0	0
1 x 5= <u>5</u>		1	5
$\overline{0}$ 7		2 3	10
1x5= <u>0 5</u>		3	15
<u>2</u>	0	4	20
4x5= <u>2</u>	0	<u>4</u> 5 6	25
	0	6	30
		7	35
		8	40
		<u>9</u>	45
=	114		

DIVISIBILITY TEST

Divisibility test of 2:

A number is divisible by 2 when the last digit is even.

e.g. 50, 22, 94,108, etc.

Divisibility test of 3:

A number is divisible by 3 when the sum of digits is divisible by 3.

					-
	=	1		=	3
	=	3 ÷ 3		=	9 ÷ 3
	=	3		=	9
	=	2 + 1		=	1 + 4 + 4
e.g.	a) 21		b)	144	

Divisibility test of 5:

A number is divisible by 5 when the last digit is 5 or 0.

e.g. 95, 240,

INTRODUCTION OF COMBINED OPERATIONS

Use BODMAS

В	-	Brackets
0	-	Of
D	-	Division
Μ	-	Multiplication
Α	-	Addition
S	-	Subtraction
Exp.	1.	Work out: $4 + 1 - 2$ = $(4 + 1) - 2$ = $5 - 2$ = 3
	2.	Simplify: $4 + 2 + 5$ = $4 + (2 \times 5)$ = $4 + 10$ = 14

Properties of zero:

- 1. $0 \ge 0$ = 0
- 2. Zero multiplied by any number gives 0.
 - i.e. $0 \ge 25 = 0 \ge k \ge 0 = 0$ $7 \ge 0 = 0$

- 3. Zero added to any number gives the number to itself.
 - i.e. 0 + 40 = 408 + 0 = 8
- 4. Any number to the power of zero gives one.
 - i.e. $4^0 = 1$ $100^0 = 1$
- 5. Zero divided by any number gives zero.
 - i.e. $0 \div 5 = 0$ $\underbrace{0}{21} = 0$

Properties of one:

- 1. Any number multiplied by one give the number itself.
 - i.e. $1 \ge 20 = 20$ $y \ge 1 = y$ $0 \ge 1 = 0$
- 2. Any number divided by one except zero gives the same number.
 - i.e. $\frac{4}{1} = 1$ $y \div 1 = y$

Magic square:

Identify the sum or magic number.

Exp. Given the magic square below, find the values of the letters.

6	а	8
b	5	с
2	d	4

Magic number	=	2 + 5 + 8
	=	15
a	=	15 - (8 + 6)
	=	15 – 14
	=	1

ARRANGING NUMBERS IN ASCENDING OR DESCENDING ORDER.

Ascending order (from small to big)

- 1. 10, 25, 8, 125 8, 10, 25, 125
- 75, 38, 146, 238
 38, 75, 146, 238

Descending order (from big to small)

- 1. 68, 29, 180, 140 180, 140, 68, 28
- 2. 758, 587, 857, 875 875, 857, 758, 587

FORMING NUMBERS FROM GIVEN DIGITS UP TO THOUSANDS

Examples:

1. 1, 3, 2 123, 132, 213, 231, 312,321 2. 2, 5, 1, 4:Find the smallest and highest number formed.

1245, 1254, 1425, 1452, 1524, 1542, 5421,

The smallest is 1245 The highest is 5421

Estimating numbers

Examples to tens:

1. 23	*	20
2.46	×	50
3. 125	*	130

Examples to hundreds:

1. 142	*	100
2. 361	*	400

<u>N.B.</u> Use a number line.

Rounding off:

1. Round off to the nearest tens:

	a) 47	ТО		e.g.	А
		4 7			
		+ <u>1 0</u>			
		<u>50</u>	<u>47 ≈ 50</u>	a)	4 ²
	b) 63	ТО			
		63		b)	102
		+ 0 0			
		<u>60</u>	<u>63 ≈ 60</u>		
				c)	3 ²
2.	Round off to the n	earest hundre	ds.		
	a) 349	НТО			
		349		(b	52
		+ <u>0 0 0</u>		uj	5 ²
		<u>300</u>	<u>349 ≈ 300</u>		
	b) 473	НТО			
		478			
		+ <u>1 0 0</u>			
		<u>500</u>	<u>473 ≈ 500</u>		

INTRODUCTION TO POWERS / INDICES Using the formula for area of a square:

5 x 5

4 x 4

10 x 10

100

3 x 3

5 x 5

25

9

16

 5^2

=

=

=

=

=

=

=

=

=

=

20

NUMBER PATTERNS AND SEQUENCE

A multiple is a product got after multiplying factors.

6 is a multiple of 2 since $2 \ge 3 = 6$ where 2 and 3 are factors.

18 is a multiple of 1, 3, 6, 9 and 2 since

1 x 18	=	18
2 x 9	=	18
3 x 6	=	18

List down all the multiples of 5 less than 27.

M5 = $(1 \times 5), (2 \times 5), (3 \times 5), (4 \times 5), (5 \times 5)$

= 5 10 15 20 55

 $: M5 = \{5, 10, 15, 20, 25\}$

REF: Learning MTC bk 4 pg

MK Bk 4 pg 67

Finding the Lowest Common Multiples

1. List down 7 multiples of 6 and 3

 $M6 = \{6, 12, 18, 24, 30, 42...\}$

 $M3=\{3,6,9,12,15,18,21\}$

- 2. Find the Common multiples from the above set of multiples.
- 3. Find the L.C.M. of 3 and 6

The L.C.M of 3 and 6 is 6

REF: MK Bk 4 pg 67 Understanding MTC bk 4 pg 101 Learning MTC Bk 4 pg 19

FACTORS

Example

- 1. List down all the factors of 6. $1 \times 6 = 6$ $2 \times 3 = 6$ $F_6 = \{1, 2, 3, 6\}$
- 2. List down all the factors of 12.

¶1 x 12∧	=	12
2×6	=	12
1 x 12 2 x 6 3 x 4	=	12
F ₁₂ =	{1,	2, 3, 4, 6, 12}

3. List down all the factors of 48.

¶1 x 48∧	=	48
$ 2 \ge 24$	=	48
3 x 16	=	48
4 x 12	=	48
1 x 48 2 x 24 3 x 16 4 x 12 6 x 8	=	48
\smile		
$F_{12}=$	{1,	2, 3, 4, 6, 8, 12, 16, 24, 48}

REF: MK Bk 4 pg 73

 GREATEST COMMON FACTORS

 Find the G.C.F. of 12 and 15

 F_{12} F_{15}

 1 X 12
 1 X 15

 2 X 6
 3 X 4

 F_{12} F_{15}
 F_{12} F_{15}

REF: MK Bk 5 pg 82

TYPES OF NUMBERS

- 1. Whole numbers These start from 0: {0,1,2,3,4,5,6,7......}
- 2. Counting numbers Start from one: {1,2,3,4,5,6,7,8....}
- 3. Even numbers
 These are numbers which are exactly divisible by 2 or a number when divided by 2 leaves 0 as a remainder.
 {2,4,6,8,10,......}
 N.B. The first even number is 2.
- REF: MK Bk 4 pg 60 Supplementary MTC Bk 4 pg Learning MTC Bk 4 pg 17

4. Odd numbers

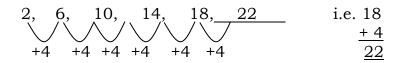
These are numbers which are not exactly divisible by 2 or when divided by 2 leave a remainder as one.

Example: {3,5,7,9,11,13,15,17,.....}

5. Prime numbers

A prime number is a number which has only two factors, that is, one and itself.

Prime numbers less than 50 are: {2,5,7, 11, 13, 17, 19, 23, 29, 31, 37,41, 43, 47 }


6. Composite numbers These are numbers that have more than two factors.

Example: {4,6,8,9,10,12,14,15,.....}

REF: Supplementary MTC bk 4 pg

SEQUENCE

1. What is the next number in the sequence?

2. What is the next number in the sequence?

- 3. Find the missing number.
 - 2, 3, 5, 7, <u>11</u> (Prime numbers)
- 4. Find the missing number;
 - 64, 32, 16, 8, _____
- 5. Find the next number.
 - 1, 3, 9, 27, _____

REF: Understanding MTK Bk 4 pg 38

GEOMETRY

Drawing line segments using rulers.

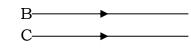
LINES

A line is a set of points illustrated as

Ray

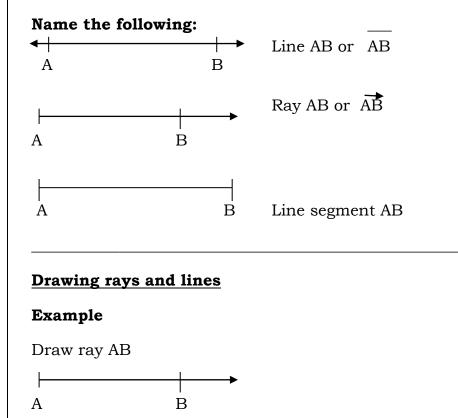
A ray is a line with one end point.

A line segment has two end points.


A line segment is named by its end points

Parallel lines

Parallel lines are lines which do not meet. They have the same distance apart at every point.


A-----

REF: MK BK 5 PG 175

Naming lines, rays and line segments.

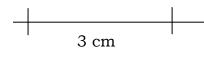
Lines are named according to the points through which they pass.

Draw line CD

← → D D

Drawing line segments of given length

Instruments to use:

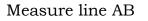

- A sharp pencil
- A ruler
- A pair of compasses

-Example:

Draw a line segment of length 3 cm.

Procedure:

- Draw a line of any length
- Mark a point at the beginning of the line.
- Place a ruler on the marked point such that the point is marked "0" cm on t he ruller is a marked point on the paper.
- Measure 3 cm.

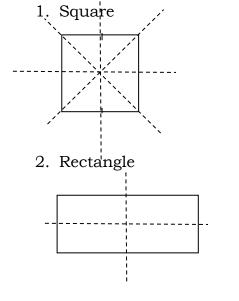


Measuring line segments

Instruments used:

- Ruler

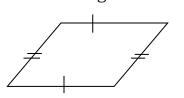
Example:

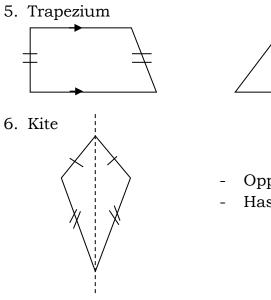

Procedure:

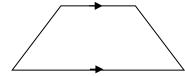
- Place the ruler at A such that the point marked 0cm is at point A.
- Take the reading which corresponds with point B, i.e.,
- -AB = 5cm

REF: Understanding MTC Bk 4 pg 7

Drawing and naming quadrilaterals.

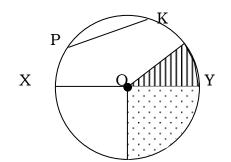

These are 4 sided figures e.g. squares, rectangles, rhombus, parallelograms, kites, trapeziums, etc.


- It has 4 equal sides
- It has 4 lines of symmetry.
- It has 4 sides
- Opposite sides are equal
- Has two lines of symmetry


- 3. Rhombus
- It has 4 equal sides It has 2 lines of symmetry.

4. Parallelogram

- It has 4 sides
- Opposite sides are equal and parallel
- Has one line of symmetry.



- Opposite sides are equal
- Has one line of symmetry

Understanding MTK bk 4 pg

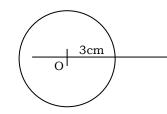
Parts of a circle.

PK	-	Chord
XO	-	Radius
XY	-	Diameter
Shaded part-		Sector
Dotted pa	art -	Quadrant

1. Finding diameter when radius is given.

- $D = r \times 2$
- e.g. Find the diameter of circle whose radius is 5cm Diameter = r x 2

= 5 cm x 2= 10 cm


2. Finding radius when diameter is given.

 $R = D \div 2$

e.g. Find the radius of circle whose diameter is 14cm Radius = D ÷ 2 = 14 cm ÷ 2 = 7 cm

3. Drawing circles using a ruler and a pair of compass.

- **Exp.** Construct a circle of radius 3cm.
 - Draw a line and mark a point to be the centre of the circle.
 - Open the compass to radius of 3cm.
 - Draw a circle round the centre.

Types of angles:

1. Acute angle:

It is an angle which measures between 0^{0} and 90^{0} . e.g. 30^{0} , 45^{0} , 15^{0} , 89^{0} , etc.

2. Right angle:

It is an angle measuring exactly 90° .

Symbol used:

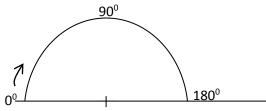
3. Obtuse angle.

It is an angle which measures more than 90° but less than 180° .

4. Reflex angle.

It is an angle which measures more than 180^o but less than 360^o.

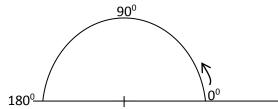
e.g. 185⁰, 240⁰, 350⁰, etc.


REF: MK BK 5 pg 193.

Drawing and measuring angles using a protractor.

1. Using outer scale.

Procedure:


- Draw a line
- Mark a point on the line
- Place the protractor such that its centre is on the point marked on the line.
- Take the reading starting from zero clockwise.

2. Using inner scale.

Procedure:

- Draw a line
- Mark a point on the line
- Place the protractor such that its centre is on the point marked on the line.
- Take the reading starting from zero anticlockwise.

REF:

MK Mathematics Bk 5 pg 195

Understanding MTC BK 4 pg 87.