

Our country, our future 525/1

S6 CHEMISTRY

Exam 18

PAPER 1

DURATION: 2 HOUR 45 MINUTES

Instructions to candidates:

Answer all questions in section A and six questions in section B.

All questions are to be answered in the spaces provided.

The periodic table, with relative atomic masses, is supplied at the end of the paper.

Mathematical tables (3 figure tables are adequate) or non-programmable scientific electronic calculators may be used.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A: (46 MARKS)

1. (a) Complete the following nuclear equations

(2 marks)

(ii)
$${7 \atop 3}$$
 Li + $\mathbf{2} {4 \atop 2}$ He

$$(iii)$$
 ${}^{14}_{7}C \longrightarrow {}^{14}_{7}N + \dots$

(iv)
$$^{214}_{83}$$
 Bi \longrightarrow $^{0}_{-1}$ e +......

(b) The half life of bismuth is 19.7 minutes. Determine the time taken for 75% by mass of the bismuth to decay (3 marks)

2.	(a) Explain what is meant by the term oxidation number (1 m)
	(b) Determine the oxidation number of
	(i) sulphur in $S_2O_8^{2-}$ and SO_4^{2-}
	(ii) Manganaga in MnO =
	(ii) Manganese in MnO ₄ ⁻
	(c) Write the half equation for the conversion of $S_2O_8^{2-}$ to SO_4^{2-} (1 mark)
	(1 mark)
	(d) Complete the following and balance the equations
	(i) $S_2O_8^{2-} + I^-$
	─

More exams? browse: digitaltears.co.ug

(ii) $MnO_4 - + Fe^{2+} + H^+ \longrightarrow$

(a) Complete the follow organic product	ng equations and in each case give the IUPAC name of the (@ 1 mark)	e main
(i) (CH ₃) ₂ CBr CH ₃	$\xrightarrow{\text{C}_2\text{H}_5\text{OK}^+/\text{C}_2\text{H}_5\text{OH}}$	
		• • • • • • • • • • • • • • • • • • • •
(ii) $CH_3C \equiv CH + H_2O$	$Hg^{2+}(aq) \rightarrow H_2SO_4$	
(iii) NH ₂	$\frac{\text{NaNO}_2}{\text{dil HCl 0°C}} \Rightarrow$	
(b) Complete the follow	ring equations and in each case write a mechanism for the (@ 1 ½ marks)	reaction
(i) $CH_3CH = CH_2$		
(ii)	$\xrightarrow{\text{AlCl}_3}$	

3.

SO_2	ies	Shape	Name o	f shape
		1		•
NH4	+			
PCl ₅				
NCl ₃	3			
) The at		er of element X is 26. outermost electron config	guration of x	(½ mark)
(i)	• • • • • • • • • • • • • • • • • • • •			•••••
*				
•		bossible oxidation states >	X can show	(1 ½ marks
(i)			X can show	(1 ½ marks
(i) (ii)	State the p			(1 ½ marks (1 mark)
(i) (ii)	State the p	oossible oxidation states Σ		

.....

			• • • • • • • • • • • • • • • • • • • •
			•••••
		(ii) Twice with 50 cm ³ of solvent A (The partition coefficient of S water is 10:1)	between A and (2 ½ marks)
		(c) Comment on your results in b (i) and (ii)	(1 mark)
6.	(a)	What is meant by (i) atomisation energy	(2 marks)
		(ii) bond energy	
	(b)	Carbon reacts with hydrogen (i) Write an equation for the reaction	
		(ii) Draw a labelled Born Haber cycle and identify the energy of each step when carbon react with hydrogen	changes involved at (1 mark)

	hydrogen are -75 Kjmol $^{-1}$, 715 Kjmol $^{-1}$ and 436 Kjmol the bond energy for C $-$ H bond	respectively, calculate (2 marks)
		•••••
at 9	A mixture of water and Bromobenzene when steam distilled 95.7°C whereas the b.p of water and Bromobenzene at stand 5°C respectively. Explain why the mixture boils at 95.7°C	ard pressure is 100°C and
(b)	Calculate the percentage by mass of Bromobenzene in the in (a). (The saturated vapour pressure of water at 95.7°C is	
	Why does the vapour pressure of a given mass of solvent do non-volatile solute is added to the solvent?	
	Why does the vapour pressure of a given mass of solvent do	
	Why does the vapour pressure of a given mass of solvent do	
	Why does the vapour pressure of a given mass of solvent do	
	Why does the vapour pressure of a given mass of solvent do	
of 1 (b) in 2	Why does the vapour pressure of a given mass of solvent do	,3- triol (glycerol), C ₃ H ₈ e boiling point of the
of 1 (b) in 2	Why does the vapour pressure of a given mass of solvent donon-volatile solute is added to the solvent? A solution was prepared by dissolving 7.5g of propan – 1,2200g of water at 25°C and at standard pressure. Calculate the	,3- triol (glycerol), C ₃ H ₈ 0
of 1 (b) in 2	Why does the vapour pressure of a given mass of solvent donon-volatile solute is added to the solvent? A solution was prepared by dissolving 7.5g of propan – 1,2200g of water at 25°C and at standard pressure. Calculate the	crease when a known m ,3- triol (glycerol), C ₃ H ₈ e boiling point of the

(a) Acidified potassium dichromate was reacted with potassi (i) State what was observed (ii) Write the half ionic equation and overall equation SECTION B: (54 MARKS) (a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	(1 mark)
(ii) State what was observed (ii) Write the half ionic equation and overall equation SECTION B: (54 MARKS) (a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	(1 mark)
SECTION B: (54 MARKS) (a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	n for the reaction (2 marks
SECTION B: (54 MARKS) (a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	n for the reaction (2 marks
SECTION B: (54 MARKS) (a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	n for the reaction (2 marks
SECTION B: (54 MARKS) (a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	n for the reaction (2 marks)
(a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	
(a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	
(a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	
(a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	
(a) What is meant by (@ 1 ½ marks) (i) first ionisation energy (ii) electron affinity	
(i) first ionisation energy (ii) electron affinity	
(i) first ionisation energy (ii) electron affinity	
(ii) electron affinity	
•	
•	
•	
•	
•	
•	
(b) The first ionisation energies and first electron affinities of	of group (VII) elements are
given in the table below.	
Name of element First ionistion energy/Kjmol ⁻¹	First electron affinity/Kjmo
Fluorine 1681	- 328
Chlorine 1250	- 349
Bromine 1139	- 325
Iodine 1007	_ 295
(i) State how the first electron affinities of group (V with their first ionisation energies	II) alamanta ganarally yary
with their first following energies	
	(1 mark)

		(ii)	Explain the trend in first electron affinity of group (VII) electron	ments (3 marks)
				•••••
		•••••		
	(c)		oiling point of group ;(VII) elements increases down the grouvation	p. Explain this (2 marks)
11.	(a)		an expression for the	(0 1)
		(i)	acid dissociation constant , Ka, for ethanoic acid	(2 marks)
		(ii)	relationship between acid dissociation Ka and the degree of acid	(1 mark)
	(b)	mol^{-1}	nolar conductivity at infinite dilution of ethanoic acid at 20° C while a 1.6×10^{-2} molar conductivity of ethanoic acid at 20° mol $^{-1}$. Calculate	is 3.5 x 10 ⁻² Sm ² °C is 1.225 x 10 ⁻³
		(i)	The degree of ionisation of the acid at 20°C	(1 mark)
		•••••		••••••
		(ii)	The pH of the acid	(3 marks)
		_		
	(c)	Besid	es concentration, state one other factor that can affect the pH	of the acid (1 mark)

12. State what would be observed and write equations for the reactions that take place when the following compounds are reacted

(a) Aqueous iron (III) chloride with sodium carbonate	(3 marks)
(b) Iron (II) ions and hydrogen peroxide in acidic conditions.	(3 marks)
(c) Chromium (III) sulphate with sodium hydroxide dropwise until in exce	ess (3 marks)
3. Write equations to show how the following conversions can be made	
(a) ethyne from ethanol	(4 marks)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • •
(b) Benzoic acid from benzene	(2 marks)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
(c) Propane from 1 bromobutane	(3 marks)
4. (a) Phenylamine hydrochloride C ₆ H ₅ NH ₃ ⁺ Cl ⁻ undergoes hydrolysis when water . Write an	dissolved in
(i) equation for the reaction	(2 mark)
	• • • • • • • • • • • • • • • • • • • •
(ii) expression for the hydrolysis constant Kh	(1 mark)

(ii) the hydrolysis constant, Kh of phenylamine hydrochloride (3 marks) The table below gives some data on substances A to D Substance A B C D Melting point (°C) 1610 -183 2015 98 Conduction of electricity Deos not Does not phonoling Does in molten state (a) Classify the solid formed by eac substance according to its structure and type of bonding Substance A B C D Type of structure D Type of structure D Type of bonding	b) A 0.2 molar solution of phenylamine hydrochloride has a pH = 3.5, calculate: (i) the concentration of hydrogen ions in solution (3 marks)										
The table below gives some data on substances A to D Substance											
The table below gives some data on substances A to D Substance											
Substance	(ii) the hydrolysis constant, Kh of phenylamine hydrochloride (3 marks)										
Substance											
Substance		• • • • • • • • • • • • • • • • • • • •									
Substance											
Substance											
Substance											
Substance											
Substance											
Substance											
Substance	The table below gives som	e data on cube	tances A to D								
Melting point (°C) 1610 -183 2015 98 Conduction of electricity Deos not Does not Does Does in molten state (a) Classify the solid formed by eac substance according to its structure and type of bonding Substance A B C D Type of structure Type of bonding (b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element Element	The table below gives som	e data on subs	tances A to D								
Melting point (°C) 1610 -183 2015 98 Conduction of electricity Deos not Does not Does Does in molten state (a) Classify the solid formed by eac substance according to its structure and type of bonding Substance A B C D Type of structure Type of bonding (b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element Element	Substance	Τ_Λ	D	С	D						
Conduction of electricity Deos not Does Does											
in molten state (a) Classify the solid formed by eac substance according to its structure and type of bonding Substance A B C D Type of structure Type of bonding (b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element Element			+								
(a) Classify the solid formed by eac substance according to its structure and type of bonding Substance A B C D Type of structure Type of bonding (b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element Element		Deos not	Does not	Does	Does						
bonding Substance A B C D Type of structure Type of bonding (b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element Element											
bonding Substance A B C D Type of structure Type of bonding (b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element Element	(a) Classify the solid formed	d by eac substa	ance according to	o its structure a	and type of						
Substance A B C D Type of structure Type of bonding (b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element	•	a by cac sabsa	ance according to	o its structure t	ina type or						
Type of structure Type of bonding (b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element Element		A	R	С	D						
Type of bonding (b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element (i) highest melting point		A	В								
(b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element Element	Type of structure										
(b) In the series Na, Mg, Al, Si, P, S and Cl State element with Element Element		+									
State element with Element (i) highest melting point											
State element with Element Element											
State element with Element Element											
State element with Element (i) highest melting point					I						
(i) highest melting point	Type of bonding										
(i) highest melting point	Type of bonding (b) In the series Na, Mg, Al	, Si, P, S and C	 C1								
(i) highest melting point	Type of bonding (b) In the series Na, Mg, Al	, Si, P, S and C	 C1								
(i) highest melting point	Type of bonding (b) In the series Na, Mg, Al	, Si, P, S and C	<u> </u>								
(i) highest melting point	Type of bonding (b) In the series Na, Mg, Al	, Si, P, S and C	Cl								
	Type of bonding (b) In the series Na, Mg, Al	, Si, P, S and C									
	Type of bonding (b) In the series Na, Mg, Al	, Si, P, S and C									
	Type of bonding (b) In the series Na, Mg, Al, State element with										
(11) Smallest atomic radius	Type of bonding (b) In the series Na, Mg, Al, State element with										
	Type of bonding (b) In the series Na, Mg, Al, State element with	point									
	Type of bonding (b) In the series Na, Mg, Al, State element with (i) highest melting	point									

More exams? browse: digitaltears.co.ug

For consultations call: +256 776 802709

	(iii) largest ionisation energy		
	(iv) smallest electronegativity		
			(2 marks)
(c)	Explain why the element you have sta	ated in (b) (i) has the highest meltin	g point (3 marks)
			••••••
16. Hy	drogen iodide decomposes when heate $2HI(g) Hz(g) + I_2(g)$		
(a)	Write an expression for the equilibrium	m constant Kc for the reaction	(½ mark)
(c)	1.54g of hydrogen iodide was heated was attained, the bulb was cooled to r iodide solution. The iodine formed frosodium thiosulphate solution for company to the contract of t	in a 600cm ³ bulb at 530°C. When e coom temperature and broken under com the decomposition required 67.0	potassium
	(i) the number of moles of hydrog	3	(1 mark)
	(ii) the number of moles of iodine	formed when hydrogen iodide was	decomposed (3 ½ marks)
	(iii) the value of Kc at 530°C.		(2 ½ marks)
			•••••
(c) S	tate what would be the effect on the va (i) the temperature was raised fro		(1 mark)

	(ii) the volume of the bulb was increased to 1200 cm ³	(1 mark)
	the extraction of iron, haematitie is mixed with coke and limestone and the ast furnace.	n heated in a
	State the purpose of adding (i) coke	(2 marks)
	(ii) limestone	(2 marks)
(b)	Explain why iron can be extracted by the ;method described above	(2 mark)
(c)	(i) Name one other method that could be used to extract iron from its ore	
	(ii) Suggest a reason why the method you have named in c (i) is not comm the production of iron	only used in (1 mark)
(d)	Write any one equation that illustrates the reduction of the ore in the blast	furnace. (2 marks)

END