Name		
Signature		
P525/1 CHEMISTRY Paper 1 1 Hour 45 minutes		
S.6 BEGINNING OF CHEM PAI	RS' S.S NAMUGONGO TERM 1 2005 EXAMS MISTRY PER 1 hour 45 min.	
Instructions: Attempt all questions in the spaces provided The periodic table with relative atomic mass Illustrate your answers with equations where	sses is supplied at end of paper	
1. (a) Identify element X in the following of	equation for a nuclear reaction	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 4. & 1 & + & \mathbf{X} \\ & \mathbf{n} & \\ & 0 & \end{array}$	
X is	(01 mark)	
relative abundances as shown below	ccurring isotopes with Isotopic masses as w: Relative abundance (%) 78.60 10.11 11.29	nd
Calculate the average atomic mass of	of Y (03 marks)	
		.
		• • • •

2.	Write equations to show how the following compounds can be synthesically CH_3CH_2 $C \equiv CCH_2CH_3$ from but-1-ene	zed
		• • • • • • • • • • • • • • • • • • • •
		••••••
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		•••••
	(b) CH_2CH_2OH to $C \equiv CCH_3$	
	(c) $CH_3CH_2CH = CH_2$ from Bromoethane (3 marks)
		• • • • • • • • • • • • • • • • • • • •
		•••••
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
3.	(a) When 8.8g of a hydrocarbon, Z was burnt in excess air, 14.4g of wat 13.44dm³ of carbondioxide were obtained at s.t.p. Determine the empiric of Z (3 ½ ma	cal formula

	(1	mark)
(c) ((i) W	rite equations to show how Z can be synthesised from an alcohol	1 (2 1/2
	The equations to show how 2 can be synthesised from an alcohol.	
•••••		• • • • • • •
(ii) In	dicate a mechanism for the first stage of the reaction in (c) (i)	(0
•••••		•••••
•••••		• • • • • • •
	sium manganate (VII) is a commonly used reagent in volumetric is not a primary standard. What is meant by the term 'primary standard'?	analys
and yet it (i)	is not a primary standard.	
and yet it (i)	is not a primary standard. What is meant by the term 'primary standard'?	
and yet it (i)	is not a primary standard. What is meant by the term 'primary standard'?	
and yet it (i)	is not a primary standard. What is meant by the term 'primary standard'?	
and yet it (i)	is not a primary standard. What is meant by the term 'primary standard'?	
and yet it (i)	is not a primary standard. What is meant by the term 'primary standard'? State two reasons why potassium manganate (VII) is not a primary standard.	
and yet it (i)	is not a primary standard. What is meant by the term 'primary standard'? State two reasons why potassium manganate (VII) is not a primary standard.	
and yet it (i)	is not a primary standard. What is meant by the term 'primary standard'? State two reasons why potassium manganate (VII) is not a primary standard.	
and yet it (i)	is not a primary standard. What is meant by the term 'primary standard'? State two reasons why potassium manganate (VII) is not a primary standard.	
(ii) (ii) (b) Expla	is not a primary standard. What is meant by the term 'primary standard'? State two reasons why potassium manganate (VII) is not a primary standard.	nary
(ii) (ii) (b) Expla	is not a primary standard. What is meant by the term 'primary standard'? State two reasons why potassium manganate (VII) is not a prin standard ain why hydrochloric acid is not used to acidify a solution of pota	nary
(ii) (ii) (b) Expla	is not a primary standard. What is meant by the term 'primary standard'? State two reasons why potassium manganate (VII) is not a prin standard ain why hydrochloric acid is not used to acidify a solution of pota	nary

(c) Calculate the oxidation (i) [Cr (H ₂ O) ₄ Cl ₂].Cl. 2	state of the element in brack CH ₂ O (Cr)	(1 ½ marks each)
(ii) Cl ₂ O ₃	(Cl)	
(iii) $K_2S_2O_8$	(S)	
Complete the following equ	uations and suggest a mechar	nism in each case (3 marks each)
(a) (CH ₃) ₂ C=CH ₂	$\xrightarrow{\text{Cl}_2 \mid \text{H}_2\text{O}}$	
(b) $H - C \equiv C - H + H_2O$	$\frac{Hg^{2+}\mid H^{+}(aq)}{warm} \Rightarrow$	
I (c) CH ₃ CH – CH ₂ I <u>I</u>	$\frac{-}{\text{EtONa+}} \text{EtOH} \rightarrow \text{heat}$	

6.	(a) State	Graham's law	(2 marks)
	the same	tain volume of oxygen diffused through a porous me condition the same volume of a gas x diffuses in 12s r mass of X	
			(3 /2 marks)
7.		in the meaning of the following terms	(2 1)
	(i)	Osmosis	(2 marks)
	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
	• • • • • • • • • • • • • • • • • • • •		••••••
	•••••		••••••
	(ii)	Osmotic pressure	(2 marks)
	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		•••••
	• • • • • • • • • • • • • • • • • • • •		•••••
	• • • • • • • • • • • • • • • • • • • •		•••••
	(b) A soluconcentral value of r	ution of polyvinylchloride (CH ₂ CHCl)n in an organiation of 4gdm $^{-3}$ and an osmotic pressure of 65Nm $^{-2}$ n	ic solvent has a at 20°C. Calculate the
			•••••
			•••••
			•••••

8.	A bromoalkane Y with molecular formula C ₄ H ₉ Br when reacted with concentrated hydrochloric acid in the presence of anhydrous zinc chloride formed two layers of liquids immediately.
	liquids immediately. (a) Write the name and the structural formula of Y (01 mark)
	(b) Write an equation and indicate a mechanism for the reaction between Y and sodium methoxide in methanol (03 marks)
9.	A concentrated solution of sulphuric acid contains 94% of sulphuric acid and has a density of 1.80 gcm ⁻³ at room temperature (a) Calculate the molarity of the acid (3 marks)
	(b) What volume of the concentrated acid will be required to make 2.5dm ³ of 2M sulphuric acid solution?
10	Calculate the heat of hydrogenation of ethyne from the following thermochemical
	data $C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(l)$ $\triangle H = -139 \text{ Kjmol}^{-1}$
	$C_2H_2(g) + 2\frac{1}{2}O_2(g) \longrightarrow 2CO_2(g) + H_2O(l)$ $\triangle H = -1310 \text{ Kjmol}^{-1}$
	$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$ $\triangle H = -285 \text{Kjmol}^{-1} \qquad (4 \text{ marks})$

•••••		
	• • • • • • • • • • • • • • • • • • • •	•••••
11. (a) Complete the table below		T
Element	Formula of oxide	Type of bonding in the oxide
Al		
Si		
P		(2 1)
(b) Write an equation for the rea	action between the avide	(3 marks)
sodiumhydroxide	action between the oxide	(3 ½ marks)
souranniyaroxiae		(5 /2 marks)
10 0	1	
12. State what would be observed a		e reactions that take place (2 marks each)
when the following pairs of con (a) Ethyne and silver nitrate in		(2 marks each)
Observation	aqueous ammoma	
Equation		
	• • • • • • • • • • • • • • • • • • • •	•••••
	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	
(b) But -1 – ene and acidified 1	ootassium permanganate	e solution
Observation		
Observation		
Equation		
•		

buring the extraction of aluminium, a current of 0.2 ampere vectors hour through aluminium sulphate solution.(a) Write an equation for the reaction that took place at each extraction that took place at each extraction.	1
(b) Calculate the mass of aluminium produced	(4 marks)
	·······

END