Ordinary level detailed course content and a simplified approach to answering ordinary level physics (535/1, 2) -2020 edition by Ivan Zizinga (B.Sc. Education-MUST)

TECHNIQUE: READ, RECITE AND REVIEW (The three R's of revising physics)

This subject piece is specifically prepared to help learners excel in there ordinary physics examinations.

It can be used by all classes and teachers to help them prepare their learners for 535/1 and 535/2.

Contents

Physics key words and phrases	3
Main competences tested in physics (535)	6
1. Knowledge	6
2. Comprehension	6
3. Application	6
4. Evaluation	6
5. Competence marks distribution in paper 2 (535/2)	6
Subject specifics	6
For multiple type questions, try to answer from your mind before you look at the answers	6
Steps to solving questions involving calculations	7
For Structured and semi-structured questions	7
Common errors made by candidates	7
(i) Failure to correctly interpret questions	7
(ii) Stating incomplete laws, principles and definitions	7
(iii) In description of experiments	7
*Requirements when describing experiments	8
(iv). Explanation questions	8
(v) Give two differences or uses	9
(vi) In calculations	9
(vii) Sketching graphs	9
(viii) Distinguish or give differences between	9
(ix) Giving general examples where specific examples are required	9
(x) In light, learners tend to draw rays without arrows	9
Basic units in physics 1	0

Page 1 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

1.	Mechanics and properties of matter	10
2.	Heat	23
3.	Light	27
4.	Waves	30
5.	Electricity	34
6.	Magnetism and electromagnetism	39
7.	Modern physics	42

Page 2 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Physics key words and phrases

The following <u>key words</u> and <u>phrases</u> are commonly used in examination questions. Please read carefully to understand the requirements of each term/phrase to help you score highly.

<u>1.</u> Define: it requires you to "state precisely the meaning of terms or words". A formal statement is required and must be precise. Do not use formula or equations to define E.g.

-Define the term density, define an ampere

-Define moment of a force

-Define the following terms Frequency and wavelength

-Define an echo

-Define hard magnetic materials and soft magnetic materials

-Define temperature and specific heat capacity

-Define the term half life

2. State: a concise answer with no supporting argument. Just like definitions, statement of physical laws must be precise. E.g.

-State the S.I unit of pressure, state Ohm's law

-State the law of conservation of momentum

-state any two ways of demagnetizing a bar magnet

-State the factors which affect the frequency of a vibrating string

-State the laws of reflection

-state two physical properties which change with temperature

-State the conditions under which electrons can be used to generate X-rays

3. What is meant byor what do you understand by..... Normally implies that a definition should be given, together with some relevant comment on the context of terms concerned. E.g.

-What is meant by internal resistance of a cell?

-What is meant by momentum?

Page 3 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

-What is meant by the term elasticity?

-What is meant by pressure?

-What is meant by light?

-What is meant by thermionic emission?

4. Explain: Give a detailed account of something. Use basic physics principles to justify or clarify the explanation. A graph or diagram will often be useful. E.g.

-Explain what happens to a ball bearing released in a viscous fluid in a tall cylinder.

-Explain why one feels more pain when pricked with a needle than when pricked with a nail

-With the help of sketch diagrams, explain the effect of size of a gap on diffraction of waves -Explain the difference between a voltmeter and an ammeter in terms of their construction and use

-Explain why a wire heats up when a current is passed through it.

5. Describe: Give a detailed account or representation of something in words, always accompany your explanations with a detailed well labeled diagram

e.g. -Describe an experiment to verify Hooke's law using a spring.

-Describe an experiment to determine the mass of a uniform metre rule using the principle of moments

-Describe an experiment to show that light travels in a straight line

-Describe an experiment to demonstrate resonance in a closed tube

-Describe the electrical method of magnetizing a steel bar

-Describe with the aid of a diagram an experiment to investigate the effect of temperature on volume of a fixed mass of a gas at constant pressure.

-Briefly describe the principle of operation of C.R.O

6. Identify: Recognize or prove something as being a certain. E.g. identify the factors that affect density of a substance.

7. Name: Write down, mention or state. E.g.

Page 4 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

-name the parts labeled in a diagram.

-Name the three main components of a cathode ray oscilloscope (C.R.O)

-Name the three secondary colors and give the primary colors that make up each of the three secondary colors.

8. Determine: Ascertain something after some observation, solve a problem or find out. E.g. Determine the refractive index of a glass block.

9. Discuss: Give points and general description in writing either for or against a statement. E.g. discuss the effect of temperature on density of water.

10. Suggest: Put forward an idea. E.g. suggest what would happen to pressure of a gas if the volume of the gas is reduced.

11. Calculate: Work out a problem mathematically. E.g.

- Calculate the focal length of a converging lens.

-A metal block of mass 3kg at 100°C is placed in 2.5kg of water at 31°C in a copper calorimeter of mass 0.4kg. The water is then stirred until it attains a steady temperature of 43°C. <u>Calculate</u> the specific heat capacity of the metal block.

12. Outline: Give the main points. E.g. outline the steps followed in determining the relative density of a substance.

13. Distinguish between: Make, show or recognize differences. E.g.

-distinguish between density and relative density of a substance.

-Distinguish between a primary and secondary color

-Distinguish between potential difference and internal resistance

Page 5 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Main competences tested in physics (535)

- 1. Knowledge: here the question tests if a learner can remember basic laws, principles, definitions, concepts, examples etc.
- 2. Comprehension: such questions test if a learner can remember and organize his/her work to make a logical flow of information. E.g.
 - (i) Describe an experiment to determine......
 - (ii) Explain the effect of rubbing a glass rod with silk
 - (iii) With the aid of a diagram, describe how a cathode ray tube works
- 3. Application: this tests whether a learner can use physics concepts to calculate, analyze or explain an observation. E.g.
 - (i) A stone of mass 5kg is released from a height of 16m. Find the speed with which it hits the ground.
 - (ii) Explain why a mingling stick is made of wood but not steel.
- 4. Evaluation: Here the learner should be able to make judgment. E.g. which of the following is not a set of scalar quantities?
- 5. Competence marks distribution in paper 2 (535/2). Every number in paper two carries 16 marks which are distributed as below.
- (i) Knowledge questions-04 marks
- (ii) Calculation questions-04 marks
- (iii) Application questions-08 marks

Subject specifics

For multiple type questions, try to answer from your mind before you look at the answers.

- 1. Read each answer thoroughly even if you think you have already spotted the correct one.
- 2. Note that some answers may be correct. But the question always requires you to choose the <u>most correct answer</u>. Be aware the wrong answers are always plausible.
- 3. Be active: sketch a diagram; write down a relationship, do anything that helps you think clearly.
- 4. Be absolutely sure to get the easier questions right, by not rushing them.
- 5. The questions carry the same marks.
- 6. In case you want to change your answer (MCQS) in section A, cancel out the value and write your answer outside the box. You are encouraged not to rub your workings in section A question papers. Leave them there.

Page 6 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Steps to solving questions involving calculations:

- 1. Summarize the information given in the question by using known/standard symbols and convert quantities to S.I units accordingly.
- 2. Draw a sketch diagram for numbers involving force diagrams.
- 3. Identify the physics laws and equations which relate to the information you have.
- 4. Present your work systematically: marks are awarded to:
 - (a) Correct formula, *do not* abbreviate words like ED for distance moved by the effort, D for density; use physics accepted symbols.
 - (b) correct substitution and
 - (c) Correct answer with correct unit.
- 5. Record your answer to the lowest form i.e. to at least three decimal places (3dp) to minimize errors.

For Structured and semi-structured questions:

- 1. Use simple straight forward English.
- 2. Use clear-labeled diagrams.
- 3. Where necessary leave space so you can add answers that occur to you later.
- 4. Explain all your working and put in correct units. Remember wrong units led to loss of marks.
- 5. Round off your final answers to at least 3 decimal places (do not leave it as a fraction).

Common errors made by candidates:

- (i) Failure to correctly interpret questions. This is caused by rushing or reading the question once. E.g. State Pascal's principle may be interpreted as "State a Pascal" or "What is a Pascal?" State the principle of moments as "state the principle of conservation of momentum". Etc.
- (ii) Stating incomplete laws, principles and definitions; usually omitting conditions. E.g. ------Charles' law states that the volume of a fixed mass of a gas is directly proportional to its absolute temperature. For that case the condition of under constant pressure is not given, therefore no mark is awarded.

-the principle of moments states that when a body is in equilibrium, the sum of clockwise moments about a point is equal to the sum of anticlockwise moments about the same point.

- Define..... in most definitions, learners miss giving key words.

(iii) In description of experiments.

- Unworkable diagrams are drawn which implies that the experiment cannot work.
- Diagrams drawn but not labelled making it hard for examiners to interpret them.

Page 7 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

- Procedure of the experiment not flowing/unworkable. I.e. if one followed the learner's procedure in carrying out the experiment, the expected results would not be obtained.
- E.g. describe an experiment to show the variation of pressure with depth in a liquid. Learner's response:

A can is filled with water. Holes are made on the sides. Water flows out from the bottom hole fastest and furthest from the can compared to the hole at the top. This shows that pressure increases with depth. *With such a response, No mark is awarded because there is no chorological flow of procedures, Holes cannot be made when water is inside the can.*

-Omission of diagram when specifically asked for. E.g. with the aid of a diagram, describe.....

*Requirements when describing experiments:

• A working diagram. It should be correctly labeled.

• Description. This gives the procedure followed to obtain the results. Within in the procedure, there MUST be recorded values in terms of unknowns, e.g. the position, p_1 of the pointer is read and recorded.

• *Observations*. In most cases, observations are embedded within the procedures. Correct observations should be made.

• *Results*. Treatment of results involves use of obtained values in the experiment to obtain a relationship between the variables. It is not necessary to derive expressions while dealing with experiments.

• *Conclusion*. Always link the final expression of the results to the question. I.e. the acceleration due to gravity is obtained from the expression, $g = \frac{4\pi^2}{slope.s}$.

(iv). Explanation questions:

Learners fail to give explanations which are based on scientific concepts/principles. Answers are common where students simply state without explaining why? Example:

(a) Explain why a handle of a door is near its outside edge. (03 marks)

Learner's response: Because the door is heavy and it can easily be opened.

<u>Correct response</u>: The force is applied at the greatest possible distance from the hinges of fulcrum. This gives the greatest moment and the force applied to open the door is minimum.

(b) Use the kinetic theory of matter to explain why temperature of boiling liquid at constant pressure remains constant. (03 marks)

<u>Learner's response:</u> Because the liquid has reached its maximum temperature. <u>Correct response:</u> When the liquid is boiling, the heat energy supplied provides latent heat to the liquid molecules. These molecules use the energy to break away from attractive forces between them to become gas molecules as they break away from the

Page 8 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

liquid body. The temperature of the molecules as a result remains constant as boiling occurs.

(v) Give two differences or uses and then a learner gives three or four. In this case only the first **two** differences/uses are considered while others are discarded.

(vi) In calculations:

- The method used may not be clear and hard to follow
- Final answer may not have a unit or with a wrong unit.
- Some learners use a formula whereas the question may demand the use of graphical construction as it is usually the case in light.

(vii) Sketching graphs: Axes may not be labeled.

Advise: Should at all times label the axes.

(viii) Distinguish or give differences between... the learner may give differences which don't have similar properties;

Advise: the learner should give matching differences.

(ix) Giving general examples where specific examples are required. E.g. give two medical uses of X-rays

Learner's response: In hospitals. For such a response, the learner is not specific and therefore no mark is awarded.

Advise: Should give the specific medical uses.

(x) In light, learners tend to draw rays without arrows; stating scales without using them, blunt pencils which affects accuracy; confusing symbols for curved mirrors and lenses in ray diagrams.

Page 9 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Basic units in physics

Before entering the paper, ensure that you have read to detail the following units in physics:

1.	Mechanics and	properties of	matter (At least 0	2 questions)
----	---------------	---------------	--------------------	--------------

Unit	Tick unit covered	Key terms/definitions, laws and formulae in mechanics
Measurements		Definitions:
You should be able to:		1. Derived quantity
1. Explain how to use:		2. Fundamental quantity
- the meter rule, the Vernier		3. Vector quantity
calipers and the micrometer screw		4. Scalar quantity
gauge for measuring length.		(give examples of each above and their units)
- beam balance, spring balance		5. A force
mass - Stop watches, watches for measuring		(State and define all types of forces e.g. Centripetal force, Up thrust, Magnetic force, friction)
		6. Weight
2 Recognize and state:		7. Acceleration
2. Recognize and state.		8. Acceleration due to gravity
fundamental quantities		9. Density
runnamentan quantities:		10. Relative density
3 Convert other metric units to S L		11. Volume
unit and vice versa.		12. Work
		13. Power
4. Express numbers in scientific		14. Energy
notation or standard order.		(state and define their S.I units)
		15. Work input
		16. Work output
5. Use the formula for calculating:		17. Load
Area and Volume.		
P.		

Page 10 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Density and relative density You	18. Diffusion
should be able to:	19. Effort
1. Define: - Density and state its	20. Moment
S.I unit and the other unit.	21. Moment of a force
	22. Couple
2. Determine experimentally the	23. Centre of gravity
densities of:	24. neutral equilibrium
- Regular and Irregular solids,	25. stable equilibrium
- Liquids and	26. unstable equilibrium
- Gases/Air.	27. terminal velocity
	28. stream line flow
3. Solve numerical problems on	29. turbulent flow
density and density of mixtures.	30. pressure
	31. Pascal
4. Define:	32. Mechanical advantage
- Relative Density (R.D)	33. Velocity ratio
- Determine experimentally the R.D	34. Efficiency
of; -	35. Pitch of a screw
Solids and Liquids.	36. Solid, liquid and a gas
5. Solve numerical problems on relative density of solids and liquids.	37. Brownian motion
	38. Surface tension
	39. Capillarity
	(state factors that affect each of the above)

Page 11 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Particle nature of matter You	40. Cohesion
should be able to:	41. Adhesion
1. Define: - Matter.	42. Displacement
2. State:	43. Speed
(i) - The states of matter.	44. Uniform speed
(ii) - The differences between the states	45. Velocity
of matter.	46. Uniform velocity
3. (a) State:	47. Uniform acceleration
- Kinetic Theory of Matter.	48. Deceleration
(b) Describe an experiment	49. Projectile
(Brownian Motion) to proof the kinetic	50. Trajectory
theory	51. Uniformly accelerated motion
(c) The effect of heat on Brownian	52. Inertia
motion.	53. Momentum
	54. Elastic collision
(d) Use the Kinetic Theory to explain	55. Inelastic collision
change of state.	56. Impulse
4. List and define the Properties of	57. Elasticity
Matter.	58. Ductility
- Molecular forces (Cohesion and	59. Brittleness
Adhesion),	60. Stiffness
- Diffusion	61. Strength
-Capillarity,	62. Stress
- Surface tension	63. Strain
5. Describe experiments to show:	64. Tie
- Diffusion in liquids and gases.	65. Strut
- Surface tension.	
- The effect of detergents on	
surface tension.	

Page 12 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Forces	Basic laws/principles in mechanics
 You should be able to: 1. (a) Define: - Force. (b) State and define: the SI unit of force. 2. List the types of forces. 3. State the effects of force on a body/particle. 4. (a) Define acceleration due to gravity (b) Explain why acceleration due to gravity varies from place to place (c) Describe an experiment to determine acceleration due to gravity, g using a simple pendulum. 5. (a) Define: - Mass and Weight. (b) State: - The difference between mass and weight. (c) Use: - W = mg, to solve numerical problems. 6. Define: - Scalar and vector quantities and give examples for each. 7. Solve numerical problems involving combination vectors (forces). 	 Law of floatation Laws of friction Newton's laws of motion Kinetic theory of matter Hooke's law Bernoulli's principle Pascal's principle Principle of moments Archimedes' principle Principle of conservation of linear momentum Principle of conservation of energy
The turning effect of forces (Moments, centre of gravity and stability) You should be able to:	 Basic formulae in mechanics 1. Moment 2. Mechanical energy 3. Force

Page 13 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

1. (a) Define: - Moment. 4. Mechanical advantage (b) State: - The SI unit of moment. 5. Velocity ratio (for an inclined plane, wheel and axle, hydraulic lift, gears, a screw, pulley 2. (a) State : - The Principle of system) moments. 6. pressure in solids - The conditions for a body to be in equilibrium. 7. pressure in fluids (b) Define: - Centre of gravity. 8. Gas pressure 9. Relative density (for solids and liquids) (c) Describe: 10. Density of a floating body - Experiments to determine the 11. Speed centre of gravity of: 12. Acceleration - Regular body e.g. lamina, 13. Equations of motion - Irregular lamina. 14. Momentum (a) State: 3. 15. Impulse Applications of Principle of 16. Elastic collision moments 17. Inelastic collision (b) Describe: 18. Potential energy **Experiments:** 19. Kinetic energy *To determine the mass of a uniform 20. Force acting on a body falling freely in a body. viscous fluid * To determine the mass/weight of an object. 4. (a) Define: - The terms Stability and equilibrium. (b) State: - The types of equilibrium. - Factors which determine the type of equilibrium. (c) Describe: - How to make a body stability

Page 14 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Work, power and energy	Key structural diagrams in mechanics
You should be able to:	1. Vernier caliper
1. (a) Define: -The following terms	2. Micrometer screw gauge
and state their SI units;	3. A density bottle
- Work and Power	4. Hydraulic brake
(b) Describe an experiment to	5. The lift pump
measure human power	6. The force pump
(c) Solve numerical problems	7. The rubber sucker
involving; Work done and Power	8. The siphon
2. (a) Define: - the term Energy and	9. An aero foil
state its S.I unit.	10. A spinning ball taking a curve
(b) State: (1) - the Law of	11. Rocket and jet engine
Conservation of energy	
(1) - the forms and sources of energy	
3. (a) Define: - Potential and	
Kinetic Energy	
(b) Describe the Interchange between	
P.E and K.E.	
(c) Solve numerical problems involving P.E and K.E	
4. (a) State: - The components of Internal-Combustion Engine.	
(b) Describe:- The mechanism of	
Four-stroke and Two-stroke Engines	
(c) State: - The factors that limit the	
efficiency of Internal-Combustion	
(d) Evaluin. How to improve the	
(d) Explain: - How to improve the efficiency of Internal Combustion	
engines.	
6	

Page 15 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

MachinesYou should be able to:1. Define:- Machine, -Mechanical Advantage (M.A), -Velocity Ratio (V.R), - Efficiency.2. State:- The types ofmachines- Classes of levers- Practical uses of machines.3. Carry out calculation on: - M.A,V.R and for the various types ofmachines.4. Sketch graphs of:- M.A against load and efficiencyagainst load.	Keyexperiments in mechanics1.Experiment to: Determine the volume of an irregular object2.Determine the density of; (i) (i)(i)A regularly shaped solid (ii)(iii)An irregularly shaped solid (iii)(iii)A floating object (iv)(iv)A pin or a ball bearing 3.3.(v)Air Determine the relative density of; (a) a liquid4.5.(b)A solid 6.6.Measure static friction Measure dynamic/kinetic friction Demonstrate Brownian motion using;
5. Explain why the efficiency of a machine is always less than 100%.	(a) Pollen grains (b) Smoke particles in air
Pressure	7. Show diffusion in liquids
You should be able to:	8. Show diffusion in gases
1. (a) Define: - Pressure and state	9. Estimate the size of an oil molecule
its S.I unit and other units;	(solve all underlying word problems /calculations)
(b) State: - The conditions for	10. demonstrate surface tension
Pressure in liquids.	11. verify Hooke's law
	(solve all underlying word problems /calculations)

Page 16 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Page 17 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Mechanical properties of matter State and define: - The following properties of materials • Strength		
 Stiffness Ductility Brittleness • Elasticity. State: (a) - The factors affecting the strength of a material. (b) - Characteristics of brittle materials. (c) - The factors which determine the amount of deformation of a material. (a) State: - Hooke's law. (b) Describe: - Experiments to verify Hooke's law using - A Nuffield spring and - A copper wire. 4. Define: - Stress and Strain. 5. (a) State: - The factors for stability and safety of structures. (b) Define: - Ties and strut. (c) Identify: - Ties and struts in a structure. 6. (a) Explain: - The effects of compression and tension forces on beams. (b) State: - The uses of beams. 7. (a) Describe: - How concrete is made. (b) State: - The uses of concrete. (c) Describe: - How concrete is reinforced. 	This space is intentionally left empty	

Page 18 of 45

ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates"

Motion	
You should be able to:	
1. (a) Define: - Speed, Velocity,	
Uniform velocity, Acceleration and	
uniform acceleration.	
(b) State: - The S.I units of:	
Speed, Velocity and Acceleration.	
- The difference between speed and velocity.	
(c) State: - The equations of	
linear motion.	
Solve problems using the equations of	
linear motion.	
2. (a) Represent linear motion	
using:	
- Displacement-time graph and	This space is intentionally left empty
- Velocity-time graph.	
(b) Describe from:	
- Displacement-time graph and	
- Velocity-time graph.	
3. (a) Calculate: - Average	
speed/velocity and	
- Acceleration from a sample of	
(b) Describe: - Motion from a sample of a ticker tape	
$A_{(a)}$ Solve problems involving:	
Motion under gravity and	
- Projectile motion.	
(b) State: - The forces acting on	
a body moving in a circle.	

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Fores and motion	
You should be able to:	
1. (a) State: - Newton's laws of	
and 3	
(b) Define: Inertia and state the	
(b) Define: - mertia and state the	
2 Define and the state the SI unit	
of momentum.	
3 (a) State: (i) - The Principle of	
Conservation of momentum.	
(ii) - The types of collision (b)	
Describe:	This space is intentionally left empty
- Experiments to verify the principle	
(law) of conservation of momentum.	
(c) State: - Applications of the	
principle of the principle of	
conservation.	
(d) Explain: - The mechanism of:	
(i) The rocket propulsion	
(ii) The jet engine	
4. Solve problems involving the	
principle of conservation of	
momentum.	

Compiled by ivanzizinga12@stud.must.ac.ug, +256704834314.

Compiled by ivanzizinga12@stud.must.ac.ug, +256704834314.

Page 21 of 45

Floatation and Archimedes principle	
 You should be able to: State: - Archimedes' Principle. Describe an experiment to verify the principle. State: - Applications of Archimedes' Principle. Solve problems involving Archimedes' Principle. State: - The law of Flotation. Describe an experiment to verify the law of Flotation. State: - Applications of the law of Flotation. Solve problems involving the law of Flotation. Solve problems involving the law of Flotation. Define: - Terminal Velocity (a) Describe: - What happens to a body released to fall in a liquid in a tall measuring cylinder until it hits the bottom. (b) Sketch a velocity- time graph for a body falling in a fluid. 	This space is intentionally left empty
Fluid flow You should be able to:	
(a) (i) State Bernoulli's principle	
(b) Explain the operation of an aero	
(c) Describe how a carburetor works	
	·

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Page 22 of 45

2. Heat (At least 01 question)

Unit	Tick unit	A must definitions, laws and experiments in
	covered	heat
Heat energy		Be able to define the following terms;
You should be able to:		1. Heat
(a) (i) Define and state the unit of heat		2. Temperature
energy		3. Thermometer
(ii) Sources of heat energy		4. Thermometric property
(iii) Uses of heat energy		5. Fixed point 6. (read about how to calibrate a
(b) Definition of temperature and units		thermometer)
(c) Thermometry		7. Fundamental interval
		8. Conduction
		9. Convection
You should be able to:		10. Radiation
1. (a) -Define thermometric		11. Sea breeze Land
properties and give examples.		12. breeze
-State:		13. thermal expansion
(i) Any two thermometric liquids.		14. Absolute temperature
(ii) The properties of a good		15. triple point of water
thermometric liquid.		10. Theat capacity 17. Specific heat capacity
(iii) Advantages of mercury over		18 Latent heat
alcohol as used a thermometer.		19. Specific latent heat
(b) Types of thermometers		20. Latent heat of vaporization
Fixed points of thermometers		21. Specific latent heat of fusion
Temperature seeles and collibration of		22. Specific latent heat of vaporization
thermometers		23. Evaporation
		24. Boiling, melting and melting point
(c) Define: The lower and upper		25. A vapor
involving		20. If the zing and freezing point 27. Saturated vapor
(i) Conversion of terms another from		27. Saturated vapor 28. Saturated vapor pressure
(1) Conversion of temperature from		29. Dew point
one scale to another.		
(11) Calculation of temperature for		
unmarked thermometer.		

Compiled by ivanzizinga12@stud.must.ac.ug, +256704834314.

Heat transfer	Determine which metal is the best conductor
You should be able to:	from a set of them.
(a) Explain	Show that water is a bad conductor of heat.
(i) Heat transfer by conduction	Show the heat conducting powers of a two or more liquids
 Applications as in good and bad conductors 	Show that glass absorbs heat radiations.
(ii) Heat transfer by convection	Determine the specific heat capacity of a liquid
 Applications in land and sea breezes 	method.
 Applications in domestic water heaters 	Determine the saturated vapor pressure of a small quantity of a liquid.
(iii) Heat transfer by radiation	Verify any of the three gas laws.
• Good and bad radiators of heat	• Pa abla to state:
Laws of radiation	(i) the 3 units of temperature
• Applications of radiation in a thermos flask	(i) the s times of temperature (ii) the kinetic theory of matter (iii) the 2 factors offseting heat transfer by
• Applications of radiation in car radiators	conduction
• Applications of radiation in solar heaters	(iv) the relationship between specific heat capacity and heat capacity (v) the 3 gas laws

Compiled by ivanzizinga12@stud.must.ac.ug, +256704834314.

Quantity of heat (heat capacity and	• Be able to; convert one unit of temperature to
latent heat)	another.
1. Heat capacity	determine the lower and upper fixed point
(a) Specific heat capacity	use an uncelebrated thermometer to measure
(i) Determination of specific heat	temperature distinguish between forced and
capacity of solids and liquids	free convection.
(ii) Numerical treatment $Q = mC\theta$	Explain why;
2. Latent heat	(a) Some rods can become red hot and other
(a) Specific latent heat Latent heat of	cannot.
fusion, $Q = mL_f$	(b) Black shoes are always polished.
(i) Expt to determine latent heat of fusion of ice	(c) In desert areas white clothes, white houses or white objects are common.
(ii) Latent heat of fusion and kinetic	(d) a silvery teapot keeps tea hot for a
theory	longer period of time. ice is slippery
	regelation is possible in ice
(b) Specific latent heat of vaporization,	(e) Why evaporation is always accompanied by
$Q = mL_v$	cooling.
(1) Expt to determine latent heat of vaporization of steam	
(ii) Latent heat of vaporization and	
kinetic theory	
(iii) Numerical treatment of latent	
heat.	
Boiling and Evaporation	Determine the initial or final temperature of a
(a) (i) Definition of boiling	mixture of two or more substances by calculation
(ii) Factors which affect boiling point	given the necessary constants.
(b)(i) Definition of evaporation	Sketch the heating and cooling curves for a pure
(ii) Factors which affect	and impure substance and explain the shape of the
evaporation	distinguish between real and ideal gases
(iii) Evaporation and kinetic theory	Be able to give
(c) Differences between boiling and	Be able to give;
(d) (i) Saturated vapor and saturated	thermometric liquid
vapor pressure	4 advantages of alcohol over mercury as a
(ii) Expt to measure saturated vapor	thermometric liquid
pressure	4 disadvantages of water as a thermometric
(iii) Kinetic theory explanation of	liquid
saturated vapor pressure	3 factors affecting the expansivity of a substance
(e) Action of the retrigerator	
(1) Action of the pressure cooker	

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

	4 advantages and 3 disadvantages of thermal
Expansion of solids and liquids You	expansion
should be able to:	3 factors affecting heat transfer by radiation
1. (a) Define: Expansion and	5 properties of radiant heat
Contraction of a material.	3 factors affecting evaporation and
	2 affecting boiling
(b) Describe: The ball & ring/The bar	the difference between a vapor and a gas or a volatile and non-volatile liquid
& the gauge experiments to demonstrate expansion and contraction in solids.	3 applications of boiling at reduced pressure the kinetic theory explanations for each of the three
(c) State (i) The applications of	gas laws
expansion in solids and liquids (ii)	• Be able to describe;
The problems caused by expansion and their solutions.	(a) How the sensitivity of a glass thermometer can be increased.
2. (a) Define: - Linear expansivity(b) Solve problems involving linear	(b) How a clinical, resistance and thermoelectric thermometers operate.
expansivity.3. (a) Describe: Experiments to	(c) How a double-glazed window or door prevents heat transfer.
show expansion in Liquids and Gases.	(d) How land and sea breezes are formed.
(b) Explain the anomalous behaviour of	(e) What is meant by the term global warming?
water and give its importance to aquatic	(f) How a vacuum flask car radiator and
animals.	domestic hot water system works.
Gas laws 1. Boyle's law; PV = constant (i)	(g) How one can make ice by evaporation of ether.
Experiment to investigate Boyle's law	(II) HOW CONStruct and canorate a mercury of alcohol thermometer
(ii) Numerical treatment	(i) The effect of temperature on saturated
2. Charles' law; $V = (constant) \times T(i)$	vabor pressure.
Experiment to investigate Charles' law	(j) How a refrigerator or hygrometer operates
(ii) Charles's law and kinetic theory	(k) briefly how a petrol or diesel engine
(iii) Numerical treatment	operates.
3. Pressure law; P (constant) x T (i)	(l) an experiment to; show that a liquid, a
Experiment to investigate the	solid or a gas expands when heated.
pressure law	(m) What is meant by anomalous expansion of
(ii) Pressure law and kinetic theory	(n) Determine whether a wire gauze is a
(iii) Numerical treatment	(ii) Determine whether a write gauze is a
4. The equation of state;	conductor of an insulator.
$PV = (constant) \times T$	

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates

Page 26 of 45

3. Light (at least 01 question)

Unit	Tick unit	Basic definitions, laws, explanations,
	covered	experiments in light
Rays and beam		Be able to define the following terms;
You should be able to:		1. Light
1. Define: (a) A ray and a beam.		2. light ray
(b) State and draw the types of beams.		3. Beam of light
		4. Shadow
		5. Umbra
		6. Penumbra
		7. Pole of a mirror
Rectilinear propagation of light 1.		8. Principle axis of a mirror or lens
(a) State (i) The rectilinear		9. centre of curvature of a mirror or lens
propagation of light.		10. Focal length of a mirror or lens
(ii) The types of shadow.		11. radius of curvature of a mirror or lens
(b) Describe an experiment for the		12. principal focus of a mirror
formation of the types of shadows.		13. Conjugate foci
(c) State: The types of eclipses. (d) Describe with a help of diagrams		14. Real and virtual images
the formation of the types of eclipses		15. Refraction
2. (a) Describe (i) The structure of the		16. Absolute and relative refractive index
Pin-hole camera.		17. Total internal reflection
(ii) The formation of image in a		18. Critical angle
pinhole camera.		19. Optical centre of a lens
(b) State: (i) The properties of the		20. Dispersion
image formed in a pin-hole camera.		21. Accommodation
(11) The effects of the object distance and the size of the pin hole, on the		
image formed in a pin-hole camera		Be able to explain briefly what is meant
3 (a) Define magnification		by;
(b) Solve problems using the formula		1. Transparent material
of magnification.		2. Opaque object
		object Annular
		eclipse
		4. Parallax
		5. Magnification or linear magnification
		6. Power of a lens
		7. Color 9. Light filters
		8. Light filters

Compiled by ivanzizinga12@stud.must.ac.ug, +256704834314.

Reflection of light on plane surfaces	
(a) Reflection in plane mirrors:	• Be able to give;
(i) Laws of reflection	□ 2 types of reflection
(ii) Formation of images by plane	□ 2 types of shadows
mirrors	□ 3 types of beams
(iii) Properties of images formed by	2 types of eclipse
plane mirrors	4 properties of images formed by plane
(iv) Applications of plane mirrors	mirrors
	 2 types of reflectors, curved mirrors and lenses 4 applications of total internal reflection2 types of colors
Reflection of light on curved surfaces	
(a) Types of curved mirrors:	• Be able to describe:
(i) concave and	a) An experiment to verify the law of
(ii) convex	reflection
Characteristics of images formed by	b) An experiment to determine the focal
concave and convex mirrors	length of a concave mirror and convex
-Magnification: numerical examples -	lens
Scale drawing and location of images	c) An experiment to verify the laws of
formed by concave and convex mirrors	retraction.
(iii) The mirror formula	(i) magnifying glass
(iv) Experiment to determine the	(i) Compound microscope.
focal length of a concave mirror	(iii) projector and
(v) Applications of curved mirrors	(iv) Lens camera works.
	e) Briefly the differences between the
	primary, secondary and complementary
	colors

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Refraction of light	
(a) (i) Refraction on plane boundaries	• Be able to state;
(ii) Definition and simple illustrations	\circ the laws of reflection
(iii) Laws of refraction	\circ The formula for the number of images
(b) (i) Experimental treatment of	formed by two mirrors inclined at an
Snell's law	angle θ to each other.
(ii) Numerical treatment	• the rules for drawing ray diagrams for
(c) Applications of refraction in:	the principle of reversibility of light
(i) Real and apparent depth	o the principle of reversibility of light
(ii) Total internal reflection	6 4 uses of curved minors
(iii) Mirages	o the law of refraction
(iv) prisms	• the relation between critical angle and absolute or relative refractive index
(d) Refraction through lenses.	absolute of relative refractive index
(i) Types of lenses	• Be able to:
(ii) Terminologies	1 construct an accurate ray diagram to show
(iii) Construction of ray diagrams	how an image is formed in a mirror or a
(iv) Properties of images formed	lens
(v) The lens formula (optional)	2. draw a diagram to show that a convex
(vi) The power of a lens	mirror has a wider field of view
(vii) Expt to determine the focal	
length of a convex lens	
Color and Dispersion of light	3. Explain why light bends towards the
(a) The spectrum	when moving from one median to
(ii) Expt to produce a pure spectrum	another.
(b) (i) Primary and secondary colours	4. how the mirage is formed
(ii) Color filters;	5. the magnitude of the field of view of the
(iii) mixing of colored lights	fish's eye
(c) The formation of the rainbow	o. now multiple images are formed in a thick plane mirror
(d) Recombination of colours	

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Optical instruments	7. why objects are colored
(a) Functions and main parts of the	8. obtain refractive index of a transparent
projector	material from real and apparent depth of
(b) Functions and main parts of the	the material
camera	9. answer questions about a triangular prism
(c) (i)Functions and main parts of	10. determine the color of an object in colored
the human eye	light
(ii) Eye defects and their correction (d)	
Comparison of the eye and the camera	

4. Waves (At least 01 question)

Unit	Tick unit covered	Key terms/definitions, laws and formulae in waves
(a) Types of waves		Key definitions in waves
-progressive and stationary waves		1. a wave
-Types of progressive waves;		2. electromagnetic wave
-transverse and longitudinal waves		3. mechanical wave
Characteristics of progressive waves		4. progressive wave
(b) Terminologies		5. transverse wave
(i) wave length		6. longitudinal wave
(ii) amplitude		7. crest
(iii) wave velocity		8. trough
(iv) crest		9. amplitude
(v) Trough etc.		10. wave length
-The wave equation: $V = f\lambda$.		11. compression
Reflection of waves		12. rare faction
Reflection of waves on		13. frequency
-Straight barriers		14. hertz
-Concave barriers		15. cycle
-Convex barriers		16. period
Refraction of waves		17. interference
(i) The ripple tank		18. constructive interference
-Effect of refraction on velocity and		19. destructive interference
wavelength		20. sound

Compiled by ivanzizinga12@stud.must.ac.ug, +256704834314.

Page $30 ext{ of } 45$

Diffraction and interference	21. echo
-Illustration using the ripple tank	22. reverberation
-Explanation of interference effect	23. ultrasonic sound
-Newton's diffracting grating	24. subsonic sound
-Effect of size on slit and wavelength	25. audible range
	26. Musical sound
Sound waves	27. Music
Production and propagation of sound	28. Noise
Characteristics of sound	29. Pitch of sound
Factors affecting the velocity of sound	30. Loudness of sound
Waves produced by stings	31. Quality of sound
-The musical scale, beats	32. Intensity
Stationary waves	33. Fundamental note
-Waves produced in pipes	34. Fundamental frequency
(i) Closed pipes	35. Nodes
(ii) Open pipes	36. Antinodes
Acoustics and reverberations	37. Harmonics
Resonance	38. Overtone
(i) Determination of velocity of sound	39. Resonance
by resonance method.	

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates

Page 31 of 45

Key laws/principles in wayes
Laws of reflection of waves
Key formulae in waves
1. $v = \lambda f$.
2. Period, $T = \frac{1}{n}$.
3. Frequency, $f = \frac{1}{T}$.
Distance, d between successive crests or troughs,
$4. d = (n-1)\lambda$
5. Velocity. V of sound, $v =$
6. Three factors that affect frequency of stretched
String; $f = \frac{1}{l} \sqrt{\frac{T}{\mu}}$.
7. Distance between a node and a node, $l = \frac{\lambda}{2}$
8. Distance between node and antinode, $l = \frac{\lambda}{4}$
Ť
Key Experiment to/ explanations to:
1. Show that sound cannot pass through a vacuum
2. why sound travels faster in solids
3. verify the laws of reflection of sound
4. measure velocity of sound using an echo method
5. determine the depth of a sea using a sonar
system
6. why echoes are not heard in small rooms
 Page 32 of 45

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

 describe refraction of sound during day and night
8. show interference of sound waves
 demonstrate resonance using a coupled pendulum and tubes
10. determine velocity of sound in air by
resonance method

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Page 33 of 45

Unit	Tick unit covered	Key terms/definitions, laws and formulae in electricity
Electrostation		Definitione
 Unit Electrostatics Be able to define or explain what is meant by the terms; Electrostatics surface density electric field electric field line direction of an electric field or field lines Be able to describe; the difference between insulators and conductors Briefly how the following devices operate; electromagnets, magnetic relays, lifting magnets, reed switch, electric bell, telephone receivers, loudspeakers. how to charge; a body positively or negatively by electrostatics induction. two bodies both negatively by electrostatic induction two bodies both positively by electrostatic induction 	Tick unit covered	Key terms/definitions, laws and formulae in electricity Definitions: electric insulator electric conductor electrostatic induction electric flux neutral point electrolyte primary cell secondary cell polarization local action amalgamation zinc amalgam charge corona discharge current ampere resistance resistivity ohm p.d volt e.m.f attample resistance attample resistance
 two bodies oppositely by electrostatics induction an electroscope positively or negatively by electrostatics induction or by contact 		24. internal resistance25. electrical energy26. electrical power27. kilowatt hour28. filament

5. Electricity (Electrostatics and Current Electricity) (at least 01 question)

Compiled by ivanzizinga12@stud.must.ac.ug, +256704834314.

• lightening occurs and how a	Key structures in electricity 1.
ingitiening conductor works	G.L.E
how people can protect	2. Lightening conductor
themselves from lightening	3. Field patterns
• Faraday's ice pail experiment	4. Simple cell (its defects)
• Be able to;	5. Dry Leclanch'e' cell
draw a well labelled	6. Lead acid accumulators
diagram of a gold leaf	(read about how its charged)
electroscope	7. Electric circuits and symbols
\Box sketch the electric field	8. Filament lamp
lines of ;	9. Fluorescent lamp/tube/discharge
-isolated positive and negative	lamp
charges	
-a charged hear a neutral	key laws/principles in electricity
-Two or more like or unlike	1. law of charges/law of electrostatics
charges near a neutral (or	2. ohm's law
earthed) surfacea charge	
in a neutral or charged pail	key experiments/explanation in
(Faraday's ice pail)	electrostatics and current electricity
-a charged electroscope	(a) explanations
- two charged parallel plates	1. charging by friction
- two charges near each other	2. charging by contact
□ state;	3. charging by induction
the first law of electrostatics	4. How electricity is transmitted from
the 3 methods of charging a	the power station to final consumer.
body	(b) experiments experiment
3 uses of an electroscope	to:
4 applications of	1. explain how a lightening conductor
electrostatics	works
	2. faradays' ice pail experiment

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Page 35 of 45

Sources of e.m.f (electric cells) Be	3. verify ohm's law (solve
able to define or explain what is	related word
meant by the terms;	problems/calculations on ohms' law)
-primary cell	4. obtain the internal
-secondary cell	resistance of a cell using:
-electric potential difference	(a) a voltmeter and standard
-electric current	resistor
-An ampere	(b) a voltmeter, ammeter and
-a volt	standard resistor.
-a coulomb	
-Emf of a cell	
-an Ohm	
-resistance of a conductor	
-Internal resistance of a cell	
- alternating current	
Be able to give;	
• six precautions given to lead acid cells	
• two advantages of alkaline cells over lead-acid cells	
• two types of electric circuits	
• two uses of internal resistance	This space is intentionally left empty
• 2 types of fuses	
Be able to describe;	
• briefly how electric power is transferred from the power station to the consumer or industries	
• the color code of the plug cables used in household wiring	
• How a dry cell and a lead-acid cell operates.	
• an experiment verify Ohm's	
law	
• an experiment to determine the	
internal resistance of a cell	

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Page 36 of 45

Be able to;	
• draw a well labelled diagram of a dry cell or lead-acid cell	
• obtain an expression for the work, W, done in moving a charge,	
• Q through a potential difference, V.	
• obtain the quantity of charge, Q, that has flown in circuit carrying an electric current, I in time, t.	
 Be able to state; the SI unit of potential, electric current Ohm's law the three formula for electric power 4 factors that affect the resistance of a conductor Be able to explain; why voltage is stepped up by transformers before transmission why alternating current and not direct current is preferred in electric power transmission. why household wiring circuits are always in parallel and not in series. Circuit components and their symbols 	This space is intentionally left empty

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Page 37 of 45

Arrangement of resistors • Derive the expressions for the total resistance of resistors and cells in series and in parallel. • Explain why ammeters are always connected in series and voltmeters in parallel with the devices whose Current or voltage is being determined respectively. This space is intentionally left empty	 Characteristic graphs of ohmic and non ohmic conductors sketch the IV curves for a; metallic wire semiconductor diode thermionic diode filament bulb And for copper sulphate solution. 	
	 Arrangement of resistors Derive the expressions for the total resistance of resistors and cells in series and in parallel. Explain why ammeters are always connected in series and voltmeters in parallel with the devices whose Current or voltage is being determined respectively. 	This space is intentionally left empty

Compiled by ivanzizinga12@stud.must.ac.ug, +256704834314.

6. Magnetism and electromagnetism (at least 01 question)

Unit	Tick unit covered	Key terms/definitions, laws and formulae in magnetism
The mean of		Voy definitions in meanatism
 The magnet Be able to define or explain what is meant by the terms; magnetic pole magnetic field direction of a magnetic field magnetic axis magnetic neutral point -Be able to give; two properties of magnetic field lines three major differences between the magnetic properties of iron and steel Be able to describe; the domain theory of magnetism Be able to; test for polarity of a bar magnet - differentiate or distinguish between; magnetic and geographic meridian angle or inclination and angle of declination magnetic domain and magnetic dipole soft and hard magnetic material Be able to state; the first law of magnetism 		Key definitions in magnetism1. Ferro magnetic materials2. para magnetic materials3. diamagnetic materials4. magnetization5. hard magnetic materials6. soft magnetic materials7. magnetic shielding/screening8. magnetic saturation9. induced magnetism10. demagnetization11. multiplier12. shunt13. magnetic meridian14. geographic meridian15. angle of declination16. angle of inclination17. the law of magnetism2. domain theory of magnetism3. right hand grip rule4. Maxwell's cork screw rule5. Fleming's left-hand rule6. Faraday's law
		7. Lenz' law
 Magnetic effect of an electric current determine; ♦ the direction of the magnetic field produced by an electric current. ♦ whether like currents or unlike 		Key experiments in magnetismExperiment to:1. distinguish between hard and soft magnetic materials2. Show that attractive forces of a
currents attract or repel		magnet are strongest at its ends

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

 ♦ the direction of the force acting on a current carrying conductor in a magnetic field Be able to state the factor affecting the force acting on a current carrying conductor in a magnetic field 	3. 4. 5.	Show that a freely suspended magnet comes to rest in the north- south direction Verify the law of magnetism Show how a magnetic material is magnetized by: (a) Single touch (b) Double touch (c) Electrical method
describe briefly how the following		(d) induction
devices operate;		(e) absolute method
electromagnets	6.	determine the polarity of a magnet
I magnetic relays	7.	show that the induced current or
I lifting magnets		e.m.f is as a result of a changing
□ reed switch		magnetic field
electric bell	8.	show mutual induction
magnetic separators		
telephone receivers	×	
electric motors		
Ioudspeakers		
 Moving coil galvanometer. 		
Image: Transformer		
• how the efficiency of a transformer can be increased		
The direction of the forces acting on a		
charged particle moving in a magnetic		
field.		
the importance of back emf in a		
coil galvanometer can be increased		
how to convert an ammeter to a		
voltmeter		

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Electromagnetic induction	
Be able to define or explain what is	
meant by the terms; magnetic	
induction induced magnetism	
magnetic shielding an	
electromagnet electromagnetic	
induction mutual induction	

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Page 41 of 45

Eddy currents	
Rectification	
-Be able to give;	
• The 4Major causes of energy	
Loss in a transformer	
• 3 Uses of transformers	
• 2 Uses of the induction coil	
• 2 Kinds of rectification	
-How full wave and half wave	
Rectification can be achieved.	
• Be able to state;	
Fleming's left-Hand rule (Motor	
rule)	
Fleming's Righthand rule (Dynamo	
rule)	
Maxwell's screw rule	
Faraday's law and	
Lenz's law of electromagnetic	
induction	
the factors affecting the magnitude	
of the induced current.	
• Be able to explain;	
-why an electric current produces heat	
when flowing in an electric device,	
using the kinetic theory of matter.	
-how electromagnetic induction is	
applied in galvanometer damping.	
-why voltage is stepped up by	
transformers before transmission	

7. Modern physics (at least 01 question)

Unit	Tick unit covered	Basic definitions, laws, experiments,
		explanations in modern physics
Atomic structure		Be able to define;
(a) The atomic structure		atomic number proton
(i) The nucleus of an atom;		number mass number
protons and neutrons		nucleon number
(ii) -Mass number,		thermionic emission
-atomic number		photo-electric e ff ect
-Isotopes, isobars and isotones		nuclear fission

Compiled by ivanzizinga12@stud.must.ac.ug, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates

Page 42 of 45

(b) Nuclear reactions	nuclear fusion
Nuclear reactions	isotope radioactivity
(i) Nuclear fusion	transmutation half-
-Nuclear fission	life
-Applications of nuclear reactions and	
products	
1	
Electrons (cathode rays)	•Be able to give;
(a) Nature and production of cathode	3 examples of isotopes.
of cathode rays	2 types of x-rays
-Properties of cathode rays	2 characteristics of photoelectric eff
The cathode ray oscilloscope	ect.
Functions of the parts	2 advantages of a cathode ray tube over
Uses of the C.R.O	a moving coil galvanometer.
x-rays	
(a) -definition	• Be able to describe;
-The X-ray tube	briefly how an x-ray tube operates
(i) Production of the X-rays	an experiment to demonstrate
(ii) Properties of X-rays	photoelectric effect briefly how a
(iii) Health hazards of X-rays	cathode ray tube operates briefly the
(iv) Uses of X-rays	nature of radioactive radiations

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

Radioactivity	how	a Geiger Muller tube works	
(a) -Radioactive radiations: alpha beta	how a scintillation counter operates		
and gamma	the three major properties used to detect		
-Properties of radioactive radiations -	radioa	ctive radiations.	
Effects of radiations on the parent			
atom	• Be a	ble to state;	
-Health hazards of the radiations.	0	5 properties of cathode rays	
(b)Measurement and detection of		6 properties of x-rays	
radioactive radiations		the health hazards caused by x-	
-The Geiger Muller tube		rays	
-The spark counters		the safety precautions that should	
(c) Half-life of a radioactive substance		be taken to a void the health	
-Determination of half-life.		hazards caused by x-rays.	
		the agricultural, medical and	
		industrial uses of x-rays.	
	0	the 3 types of photocells	
The thermionic diode		4 uses of photocells	
-Action of a diode		3 properties of each of the 3	
-Diode characteristic graph		radioactive radiations	
-Rectification of A.C		2 uses of nuclear fission	
		4 medical and	
		4 industrial applications of	
		radioactivity	
		5 health hazard causes by	
		radioactive radiations	
		4 safety precautions that should be	
		ensured to reduce the health	
		hazards caused by radioactive	
		radiations.	
	1		

Compiled by <u>ivanzizinga12@stud.must.ac.ug</u>, +256704834314.

"Embrace group discussions, consult your teachers, make use of text books and work out UNEB past papers for at least 15 years" Success to all my 2020 S.4 candidates

Page 44 of 45

Photo electric effect	
-definition	• Be able to;
(i) Expt about photo electric effect (ii)	Explain what is meant by;
Applications of photo electric effect	(i) Thermionic valves
	(ii) grid and anode current
	(iii) quality and quantity of x-rays
	(iv) Identify alpha, α , beta, β and gamma rays and particles from their cloud chamber pictures.
	(v) Relate peak value and root mean square values of voltage or current.
	(iv) Identify the radioactive radiations from sketches showing their deviations in electric and magnetic fields.
	(v)Identify the type radioactive radiations emitted or absorbed from a decay equation.
	(vi) Determine the half-life of a
	radioactive sample from some simple
	given date or from its decay curve.

"READ, RECITE AND REVIEW" HAVE A PEN, A PAPER AND A CALCULATOR

1

¹ All rights are reserved. This book is non-printable without authority from the owner.

Compiled by ivanzizinga12@stud.must.ac.ug, +256704834314.