S 5 TEST 2

- 1. Rationalise: $\frac{1+\sqrt{3}}{(\sqrt{3}-1)^2}$
- 2. Using the substitution $y = x^2 x$ to solve the equation $x^4 - 2x^3 - 7x^2 + 8x + 12 = 0.$
- 3. Solve the simultaneous equations $x^2 + y^2 = 25r^2$ and 2y + x = 10r giving the answers in terms of *r*.
- 4. Solve for x and y: $5^{x+2} + 7^{y+1} = 3468$, $7^y = 5^x 76$
- 5. Solve the simultaneous equations: $\frac{x+2}{y-4} + \frac{2(y-4)}{x+2} + 3 = 0$, x-y=3.
- 6. Show that $\log_8 x = \frac{2}{3}\log_4 x$, hence, without using tables or calculator, evaluate $\log_8 6$, correct to 3 d.p given $\log_4 3 = 0.7925$.

7. If
$$2\log_8 N = p$$
, $\log_2 2N = q$, $q - p = 4$, find N.

- 8. Given that the roots of the equation $x^2 21x + 4 = 0$ are α^2 and β^2 and α and β are both positive, find;
 - i) $\alpha\beta$ and $\alpha+\beta$
 - ii) the equation whose roots are $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$.