Name:	Centre/Index No	
Name of school	Signature:	
P530/1		
BIOLOGY		
(THEORY PAPER)		
Paper 1		
July/August 2009		
2½ Hours		

WAKISSHA JOINT MOCK EXAMINATIONS Uganda Advanced Certificate of Education BIOLOGY Paper 1 2 hours 30 minutes

INSTRUCTIONS

- Answer ALL questions in both sections A and B
- Section A: Answers to this section must be put in the boxes provided on the Left side of each question
- Section B: Answers to this section should be written in the spaces provided only not anywhere else. No additional sheet(s) of paper should be inserted in this booklet.

FOR EXAM	MINER'S USE ONLY
Section	Marks
Section A: 1 - 40	
Section B: 41	
42	
43	
44	
45	
46	
Total .	

		SECTION A (40MARKS)	
1.	Whi	ch one of these makes an active cell get more oxygen than an inactive cell	
		oxyhaemoglobin? The active cell has;	
	A.	Low oxygen tension	
	B.	Low Carbondioxide tension	
	C.	High oxygen tension	
	D.	High Carbondioxide tension.	
2.	Whi	ch of the following stages occur during which the bicuspid and tricuspid	
	valv	es are closed?	
	Α. ١	Ventricular systole	
	B. /	Atrial systole	
	C. \	Ventricular systole	
	D. I	ate joint diastole	
3.	Whi	ch one of the following is a function of the T-helper cell in body defence?	
	A. I	Cills the antibodies	
	B. S	timulates B cells to mature	
	C. k	Cill the antigen	
	D. S	uppress B- cells	
		*	

4. Which one of the following biological processes does NOT utilize respiratory energy?

A. Absorption of mineral salts

B. Synthesis of mineral salts

C. Loss of water vapour from stomata

D. Meiosis

5.	Saltatory conduction occurs in	
	A. Thin nerve fibres	
	B. myelinated fibres	
	C. thick nerve fibres	
	D. non-myelinated fibres.	
6.	During single circulation in insects, blood,	
	A. flows within the heart posteriorly	
	B. leaves and re-enters the heart via ostia	
	C. leaves the heart through the ostia	
	D. re-enters the heart through the ostia.	
7.	A chemical stains nuclei red. Which one of the following would stain deepest red?	
	A. Tracheids	
	B. Cambium	
	C. Collenchyma	
	D. Parenchyma	
8.	The potentiality for the replication of DNA depend on	
	A. Hydrogen bonds, between the bases	
	B. High energy bonds between phosphates	
	C. Covalent bonds between bases	
	D. High molecular weights	
9.	Which of these occurs in cellular respiration when the chemical bonds break	and
	release energy in step wise oxidation?	
	A. Temperature rises	
	B. Enzymes are involved	
	C. Energy is dissipated as heat	
	D. Light is produced.	

10.	Which one of the following components are necessary for blood clotting at a	-
	ruptured vessel?	
	A. Calcium ions, fibrin, vitamins, serum	
	B. Calcium, ions, thrombin, platelets, vitamin E	
	C. Thromboplastin, calcium ions, thrombin, vitamin K	
	D. Thromboplastin, calcium ions, thrombin, vitamin E	
11.	The initial absorption of water by a germinating seed cotyledon and endosperm is	
	caused by;	
	A. Osmostically active substances in endosperm and cotyledons.	
	B. Imbibition pressure due to colloidal particles in the seed.	
	C. Active absorption involving expenditure of energy.	
	D. Mass flow through the micropyle	
12.	Which one of the organisms below has metameric segmentation?	
	A. Earth worm	
	B. Round worm	
	C. Tape worm	
	D. Star fish	
	in the second se	
13.	Haemophilia is caused by a recessive gene (h) and is sex-linked, occurring	
	commonly in males. If a hameophilic has a carrier wife, what would be the	
	probability of having haemophilic daughter in the family?	
	A. 0%	119
	B. 25%	
¥	C. 50%	
	D. 75%	¥
	W. Control of the Con	

14.	Which of these stages have the main differences between mitosis and meiosis?	
	A. Metaphase 1 and prophase 1	
	B. Prophase I and metaphase II	
	C. Metaphase II and Prophase II	
	D. Metaphase I and Prophase II	
15.	The role of Ca ²⁺ in the process of muscle contraction is to.	
	A. cause depolarization of T-tubule system	
	B. Change the configuration of Troponin, thus exposing myosin binding sites.	
	C. bind to tropomyosin and break actin-myosin cross bridges	
	D. Change the configuration of myosin heads thus causing microfilaments to	
	slide over each other.	
16.	Which one of these explains the slow movements of blood through capillaries?	
	A. Lots of blood volume is lost from the capillaries	
	B. The pressure in venules is high	
	C. The cross-sectional area of capillaries is larger than that of arterioles.	
	D. The osmotic pressure in capillaries is very high.	
		2311
17.	Which of the following structures in the nephrone is responsible for the variation	
	in the rate of urine production in mammals? The	
	A. glomerulus	
	B. Bowmans capsule	
	C. loop of Henle	
	D. Collecting duct	
18.	Which one of the following is likely to be TRUE for groups of mammals	
	dispersed in a regular pattern?	
	i) increased risk of predation	
	ii) less exposure to diseases and parasites	
	iii) poor access to mates	

	i	iv) increased territorial behaviour	
		A. i, ii and iii	
	1	B. ii, iii and iv	
		C. i, iii and iv	
		D. ii and iii only.	
		: : a responsible	
19		Which of the following stages in the life cycle of the plasmodium is responsible	
		for the rapid body temperature rise in malaria patients?	
		A. Formation of sporozoites from zygotes	
		B. Formation of merozoites from sporozoites	
		C. Formation of gametocytes from gametocytes	
		D. Development of zygotes from gametocytes	
		, <u>r</u> 0	
20.		In which sub stage of prophase I of meiosis does synapsis appear first?	
		A. Leptotene	
		B. Zygotene	
		C. Pachytene	
		D. Diplotene	
		and the state of the support their	
21.		Which of the following honey bee castes feed on the same diet throughout their	
		life cycle?	
٠,	A.	Both drones and workers	
	B.	Drones only.	
	C.	Queens only	
	D.	Workers only.	
		idead each of the	
22.		When formulating his theory of evolution, Darwin considered each of the	Œ
		following except.	
		Genetic theory	
1	B.	Morphology of living organisms	
(C.	The geographical distribution of organisms	
Ī	D. '	The structure of the fossils	
		6	

23	•	What would be the code of the anti-codon on tRNA that binds with mRNA w	hose
		DNA template was AGT?	
		A. AGT	
		B. AGU	
		C. UCA	
		D. TCA	
24		Which of these is NOT a likely result of polyploidy in plants?	
	A.	Increased hardness	
	В.	Resistance to diseases	
	C.	Decreased hybrid vigour	
	D.	Formation of seedless large fruits.	
25.	ě	A generative nucleus in a pollen grain serves to;	
	A.	Fuse with the egg cell to form a zygote.	
	B.	Control the growth of the pollen tube.	
	C.	Produce two male Nuclei	
	D.	Fuse with the polar nuclei to form the triple endosperm nucleus.	
			
26.		A person who walks unsteadily may have a defect in the	
	,	A. Cerebrum	
	I	3. Medulla oblongata	
	(C. Hypothalamus	
	I	O. Cerebellum	
			-
27.	7	the fluid which flows into the duodenum from the pancreas via the pancreatic	
	d	uct has a composition of;	
	A	. Amylase, peptidase, rennin, trypsinogon	
	В	. Lipase, amylase, pepsinogen, maltose	
	E	. Amylase, trypsin, pepsin, peptidase	
		Lipase, trypsinogen, peptidase, amylase.	

28.		In which one of the following parts of the cell does the least production of AT	rp
		occur? In the ;	
	Α.	Cytoplasm	S 2 - 2
		Matrix of mitochondrion	
		Cristae of mitochondrion	
		Outer membrane of mitochondrion	
	~.	· ·	
29.		Which one of the following nitrogen bases has two rings in their structure?	
		A. Cytosine and Thymine	
		B. Cytosine and Adenine	
		C. Adenine and Guanine	
		D. Adenine and Thymine	
30.	it.	In which phases in Oogenesis are the products diploid?	
	A.	Maturation and multiplication phases	
	B.	Growth and multiplication phases	
		Maturation and growth phases	
	D.	Multiplication and differentiation phase.	
31.		The figure shows a longitudinal section of a shoot apex.	
		N M	
		0	
		Which is the main activity taking place in region N?	
		A. Cell elongation	
		B. Meiotic cell division	
		C. Differentiation	
		D. Mitotic cell division	
		· ·	
		© WAKISSHA Joint Mock Examinations 2009	

32.	The perfect detection of the adjustment in the lateral edges of vision is as a result
	of;
	A. Simple eyes
	B. Cones only
	C. Rods only
	D. Compound eyes.
33.	Secretions from B-cells of islets of langerhans lead to the following EXCEPT:-
	A. Increased ATP synthesis
	B. Suppresses blood sugar
	C. Lead to nervous stimulation and muscle activity
	D. It leads to diabetes melitus during hypo-secretion
34.	Which of the following is NOT true about Rough Endoplasmic Reticulum?
	A. It stores proteins which have been produced by ribosomes
	B. The ribosomes are permanently attached to it.
	C. It is continuous from the nuclear membrane
	D. It is an intercellular system with flattened cavity.

The figure below shows a summary of the dark and light stages of photosynthesis. Use it to answer questions 35 and 36.

- 35. The products of the light reaction, labeled X, are:-
 - A. NADPH2 and ATP
 - B. NADPH₂, Oxygen and ATP
 - C. NADP and Oxygen
 - D. ATP and Oxygen
- 36. The substance Y in-corporated into the dark reaction is:-
 - A. RuBP
 - B. PEP
 - C. Carbon dioxide
 - D. ATP
- 37. Which of the following is a behavioural method of controlling birth?
 - A. Abortion
 - B. Various Intra-Uterine devices
 - C. Rhythmic Method
 - D. Sterilization of the males or females
- 38. In the figure below, the curves represent the rate of enzymes controlled reactions for three different enzymes A, B and C.

10

WAKISSHA Joint Mock Examinations 2009

	Which of the following statements can be regarded as the MOST correct	
	conclusion about the effect of pH on enzyme activity?	
	A. The rate of action of enzymes decreases with pH	<u> </u>
	B. Enzymes work best within a narrow range of pH which is different for	
	different enzymes.	
	C. Enzymes work best in alkaline conditions	
	D. Enzymes are active in a particular pH only.	
39.	Which of the following does NOT happen in non-cyclic electron transport?	
	A. Oxygen gas is released	
	B. ATP and NADPH ₂ are formed	
	C. Water donates electrons and protons	
	D. ATP and NADH ₂ are formed.	
40.	In the mammalian menstrual cycle, the decline in the level of progesterone is	due
	to;	
	A. Successful conception	
	B. Formation of corpus Luteum	
	C. Degeneration of corpus Luteum	
	D. Maturation of Grafian follicle.	

SECTION B (60 MARKS)

41) a)	State Mendel's first law of inheritance (02 marks)
1.	Man Carta de la contra de la contra de morta de
b)	Manx Cats do not have tails. When a manx cat is mated with a normal long tailed cat, approximately half of the offsprings are long tailed and approximately half are manx. When two manx cats are mated the ratio of offsprings is 2manx to 1 long tailed cat.
i)	What does this suggest about the inheritance of the manx condition in cats? (03marks)
ii)	Show by means of a cross, the inheritance of manx condition when two manx cats are mated. (05marks)

a)	Define Indicator Species	(01 mark
	b) Figure below shows number of Lichen spectransect from an industry.	ies growing along a 2
	S 50 -	
	Number of lichen speaces	

i) Comment on the trend of the graph up to 10km from the Industry.

Distance from industry / km

(02marks)

ii) Explain the trend of the graph in b(i) above. (03marks)

13
© WAKISSHA Joint Mock Examinations 2009

	N N
iii)	Suggest two possible reasons for the trend of the graph between X and Y.
	(02marks)
:)	State two strategies a developing country can design to ensure
	conservation of natural resources. (02marks)
	•

43. The illustration below shows the action of the female hormones during pregnancy.

Study it and answer the questions that follow:-

14
© WAKISSHA Joint Mock Examinations 2009

ldent	ify the portions of the pituitary gland labelled D and B. (02 marks)
i)	D
ii)	В
Nam	e a hormone, C in the diagram above. (01mark)
	t is the role of hormone C mentioned in (b) above (02 marks)
Nam	ne the hormone, G and structure H (02 marks)
	•
ii) F	1
	e the two (2) roles of hormone G and one (1) role of structure H. (03 marks
i) G	
1	
ii) I	Н
,	

Explain the role of Sodium ions in maintaining high water poter	(4 marks)
	· · ·
Urination almost stops during excessive bleeding.	(02 marks)
Y I don't recease out I bring that abanges yellow if boiled with b	enedicts solution.
Individual passes out Office that changes yellow it boiled with o	(02marks)
Give two structural mechanisms employed by fresh water fish problem of osmoregulation.	to solve the (02 marks)
	Give reasons for the following observations, in a human being:- Urination almost stops during excessive bleeding. Individual passes out Urine that changes yellow if boiled with being the company of th

45. a) Distinguish between tropic response and nastic responses. (02 marks)

b) The figure below shows the effect on growth of applying different concentrations of auxins to the shoot of bean seedlings expressed as a percentage stimulation of growth.

 i) On the figure above, include a curve to show the effect on root growth of the same auxin concentration if applied to the roots of the same seedlings.
 (01mark)

17
© WAKISSHA Joint Mock Examinations 2009

::\	What do the positive and negative values on the vertical axis of the	graph above
	mean?	(01mark)
)	Explain the effect of auxin concentration on shoot growth, reflected	d by the curve
,	above.	(06 marks)

46. The graph shows the response of an individual to an initial and later dose of antigen. Study it and answer the questions that follow:-

- a) Name the type of response shown in
- i) Phase A____
- ii) Phase B
- b) State two differences observed in the graph between the responses in A and B.

(02marks)

	c)	What advantage does response B create to the body as compared to
		response A? (03 marks)
	_	
d)	Exp	ain the importance of response in phase A to the body of a human being. (04 marks)
		·

END

Name	Centre/Index No
Name of School	Signature

P530/1 BIOLOGY (Theory Paper) PAPER 1 July/August 2011 2¹/₂ hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

BIOLOGY

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

- Answer all questions in both sections A and B
- , man or an questions in company
- Section A: Answers to this section must be written in boxes provided on the left side of each question.
- Section B: Answers to this section should be written in the spaces provided only NOT anywhere else.

No additional sheet(s) of paper should be inserted in this booklet.

CECTION		MARKS	INITIALS
SECTION		WARKS	INITIALS
Section A:	1-40		
Section B:	41		
	42		
	43		
	44		
	45		
	46		
TOTAL			

SECTION A (40 MARKS)

Write the letter to the correct answer in the corresponding box provided.

1.	 Facilitated diffusion and active transport both require A. Adenosine triphosphate. B. Protein carriers. C. Unidirectional movement of solutes. D. That the solutes moved be soluble in lipids. 	H V-1
2.	The substance which lowers the surface tension in alveoli to ease their ventilation movements of the chest is A. Mucus. C. Surfactant. B. Tissue Fluid. D. Lymph.	r flexing during
3.	 Which of the following does not occur during cyclic photophosphoryl A. Oxidation of chlorophyll. B. Production of NADH. C. Production of ATP. D. An election transport system. 	ation?
4.	The homeostatic reaction glycogen → glucose during stress is stimu hormone A. Insulin. B. Glucagon. C. Adrenalin. D. Thyroxin.	lated by the
5.	During support in flowering plants, the following forces are experience A. Tension. B. Shear stress. C. Thrust. D. Compression.	ed except
6.	 Which of the following hereditary characteristics is known to be sex ling. A. Haemophilia. B. Baldness. C. Albinism. D. Colour - blindness. 	nited?
7.	Which of the following does not play part in regulating the salt concentration blood? A. Kidney. B. Skin. C. Liver. D. Pituitary gland.	tration of
8.	 Viruses can not reproduce outside a living cell because A. Not all of them contain DNA. B. They are too small to reproduce. C. They are unable to synthesize their own DNA. D. they are unable to absorb raw materials from the surroundings. 	

9,	In order to survive in the sea, a marine bony fish A. loses water by osmosis and absorbs salts. B. swallows water and absorbs salts. C. swallows water and extrudes salts. D. gains water by osmosis and extrudes salts.	
10.	Which of the following mineral elements is not required by plants?A. Copper.B. Iron.C. Iodine.D. Zinc.	
11.	Monosomy and Trisomy are genetic abnormalities that usually arise due to A. Polyploidy. B. Crossing over. C. Non-disjunction. D. Lack of cytokinesis.	
12.	Sensitivity of the uterus to oxytocin is increased in a human female by a hormone A. Progesterone. B. Oestrogen. C. Prolactin. D. Luteinizing hormone.	
13.	Development of a seed from an unfertilized egg is A. Vivipary. B. Apogamy. C. Apospory. D. Parthenocarpy.	
14.	Which of the following is the function of helper T- cell in the immune response? A. Activates B Cells. B. Kills the antibodies. C. Kills the antigens. D. Suppresses B cells.	
15.	Haemolytic disease of the new born usually occurs when A. Rh' mother bears Rh' foetus. B. Rh+ mother bears Rh' foetus C. O' mother bears A' foetus. D. O' mother bears A' foetus.	
16.	The potentiality for the replication of DNA depends onA. Hydrogen bonds between the bases.B. High energy bonds between phosphates groups.C. Covalent bonds between bases.D. High molecular weight.	
17.	Patients with diabetes mellitus have frequent urination and increased thirst becaus A. Less water passes from the glomerulus to the Bowman's capsule. B. More water is driven from the glomerulus to Bowman's capsule than normal. C. More salt is reabsorbed at the proximal convoluted tubules. D. Increased glucose in the urine increases its osmorality and less water is reabsorbed by blood.	

18.	 Skeletal muscle contraction is normally triggered by release of neurotransmitter at a synapse that A. causes high level of oxygen and sugar to be released by sarcolemma. B. causes actin and myosin to slide past each other. C. causes flow of calcium ions that attaches to actin filaments exposing the myosin binding sites. D. causes flow of calcium ions that release ATP which then causes Actin filaments to slide past myosin filaments.
19.	According to evolutionary history the first animals to evolve flight as a means of locomotion were A. Mammals. B. Birds. C. Insects. D. Reptiles.
20.	The pigment molecules of a chloroplast are located within the A. Thylakoid membranes. B. Inner membranes. C. Intrathylakoid space. C. Intermembranal space.
21.	Some animals appear to spend time and energy helping others of their species. This type of behavior is A. Competition. B. Mutualism. C. Territoriality. D. Altruism.
22.	During meiotic cell division which of the following events occur during synapsis? A. Random separation of homologous chromosomes. B. Replication of DNA. C. Mixing up of half the maternal and paternal chromosomes. D. Pairing up of homologous chromosomes.
23.	Fixed action patterns of behaviour are predictable stereotyped behavioural responses due to A. Habituation. B. Imprinting. C. Insight. D. Innate behaviour.
24.	Which of these best describes development? A. Cells divide and become large. B. Cells become specialized in structure and function. C. Body parts are shaped and patterned into a specific form. D. Organs and systems form.

25.	In humans, the ability to taste the chemical PTC (phenyl Thiocarbamide) is inherited as a simple dominat characteristic. Suppose 360 out of 1000 college students could not taste the chemical. What is number of heterozygous students in the population? A. 360 B. 240 C. 590 D. 480	the
26.	Some species that appear to occupy the same niche are able to co-exist because A. Habitat fragmentation. B. Resource partitioning. C. Tolerance. D. Competition.	of
27.	Which one of the following is the main form of photosynthetic product transport through the phloem? A. Starch B. Amino acids C. Sucrose D. Glucose	ted
28.	 High carbondioxide concentration in respiring tissues is important because it can A. Local vasodilation, allowing more blood into the tissue. B. Low PH in the tissues leading to unloading of oxygen. C. Local vasoconstriction creating high blood pressure. D. Increased heart beat. 	ises
29.	Compared to carbohydrates, fats have higher energy value because fats. A. Have long chains of fatty acids. B. Are more compact in structure. C. Have a higher proportion of carbon atoms. D. Have a higher proportion of hydrogen atoms.	
30.	When a man is attacked by a pathogen that secretes antigens, his body secretes antibodies. This type of immunity is called A. Passive immunity. B. Active immunity. C. Short-lived immunity. D. Artificial immunity.	

The geographical distribution of four populations of certain species of organisms is 31. shown in the diagram below 5 N Fertile off springs are produced where the populations interbreed at areas K.L.M and not N. How many species are present? A. 1 B. 2 C. 3 D. 4 Cells with important secretory functions have well developed... 32. A. Mitochondria B. Lysosomes C. Centrioles D. Golgi body The trophic level that has the least amount of energy is 33. A. Producer B. Decomposer C. Primary consumer D. Secondary consumer Which of the following human cells contains only non-homologons chromosomes? 34. A. Hepatocytes B. Erythrocytes C. Chondrocytes D. Spermatozoa. Which one of the following occurs when arterial pressure falls too much? 35. A. Stretch receptors are stimulated B. cardiac output decreases C. Peripheral blood vessels dilate D. Stretch receptors are not stimulated. Which of the following causes the closure of aortic valves during cardiac cycle in 36. mammalian heart? A. Filling of atria with blood. B. Ventricular pressure rising above aortic pressure. C. Ventricular pressure falling below aortic pressure. D. Contraction of ventricles.

37.	Gametes in gametophyte generation of a moss are formed by A. Meiosis 1. B. Mitosis. C. Meiosis II.	
	D. Meiosis I and II.	
38.	Which one of the following is <u>not</u> an essential force during flight in birds? A. compressional force.	5
	B. Sinking force.	
	C. Driving force.	
	D. Lift force.	
39.	A condition known as "Rigor mortis" usually results from A. Supply of enough ATP to the Skeletal muscle prior to death. B. failure of the Actin-myosin bridges to form. C. Short supply of ATP to skeletal muscles prior to death. D. Shortage of tropomyosin and troponin protein molecules.	
40.	Which of the following sets of inner ear parts constitutes the "Organ of Corti"? A. Oval window, Basilar membrane, auditory nerve. B. Tectorial membrane, basilar membrane, sensory hair cells. C. Round window, tectorial membrane, sensoy hair cells. D. Tectorial membrane, middle canal, basilar membrane.	

41. Figure I below shows the number of ant species recorded at different latitudes.

Fig 1.

(a)(i) Describe the distribution of ant species as latitude changes. (02marks)

(ii) Explain the distribution of ant species as latitude changes.	(5 marks)
	••••••
	••••••
	•••••••

	(b) Give three major effects of loss of Biodiversity in a given area.	(3 marks)
		••••

42.(a)	What is founder's effect?	(1 ¹ / ₂ marks)
		• • • • • •
		• • • • • •
		,
(b)	Explain how founder's effect may lead to formation of a new species.	(5 marks)
		• • • • • • •
(c)	State how speciation in a given population may be prevented.	(3 ¹ / ₂ marks)
		• • • • • • •
		•••••

43. Figure 2 below shows the metabolic rate and body temperature of a naked man subjected to a gradually lowering environmental temperature from 29°C to 1°C in an experiment.

Figure 2

(a) What do points Y and Z represent in the figure above?

Y	$(0^{1}/_{2} \text{ mark})$
Z	(0 ¹ / ₂ mark)

(b) Explain the effect of lowering environmental temperature in this experiment (5marks)

(c)	Why should body temperatures increase when malaria parasites invade the body? (4 marks).

44. Figure 3 below shows degradation of an hexose sugar and generation of a triose sugar in a C₃ plant and in animal in presence and absence of oxygen.

Figure 3

(a)(1) Name compounds represented by letters W, X, Y, Z.	
	(2 marks)
W	
X	
Υ	
Z	
(ii) How do the reactions in stage 2 differ from those of stage 3?	(2 marks)

••••••	
••••••	

(iii) State the significance of stage 4 in energy production. (1marks)	
(b) What would happen if a poison is added at stage 3?	(2 marks)
	••••••
<i>y</i>	
(c) State how compound X is modified to form the second sugar (triose sugar)	
	(3 marks)
	••••
•••••	****

•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	
	•••••

15. (a)	Outline two structural difference	s between cartilage and spongy bone. (2marks)			

(b)	What advantages does having a v	vell developed locomotory system confer to an			
25. 25.	organism?	(4 marks)			
/- \	ANY DESCRIPTION OF THE PROPERTY OF THE PROPERT	n the first purely aquatic animals that enabled them			
(c)	colonize terrestrial habitats.	(4 marks)			
- 1					

		••••••••••			
46.	Table 1 below shows control of d	ligestion along the alimentary canal of a human			
	being.				
	Table 1				
	Part of alimentary canal	Mechanism of controlling digestive juice secretion.			
	Mouth	Purely Nervous control			
	Stomach	Both Nervous and Hormonal control			
	Duodenum	Purely hormonal control.			

a)	State the significance of the observed trend of control of secretion of digestive juice		
	along the alimentary canal. (6 marks)		

	•••••		
(b)	Give the role of hormones in stimulating the secretion of digestive juices in the		
(0)	duodenum (4 marks)		
	·		

	END		
	RIVID		

Name	Centre/Index No
Name of School	. Signature

P530/1
BIOLOGY
(Theory)
PAPER 1
July/August 2012
2¹/₂ hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education BIOLOGY (Theory)

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in both sections A and B

Section A: Answers to this section must be written in the boxes provided.

Section B: Answers to this section should be written in the spaces provided and not anywhere else.

No additional sheet(s) of paper should be inserted in this booklet.

	FOR EX	KAMINERS' USE ON	NLY
SE	CTION	MARKS	INITIALS
Section A:	1-40		
Section B:	41		
	42		
	43		
	44		
	45		
	46		
TOTAL		3	1

SECTION A (40 MARKS)

1.	A	an invagination of the cell surface membrane facilitates.	
	A B C. D	Diffusion Endocytosis	
2.		vaporation of water from a body surface causes cooling because water has igh	a
	A. B. C. D.	. Boiling point	
3.	Br	ryophytes and pteridophytes can not fully exploit terrestrial life because th	ey
	A. B. C. D.	Lack roots Depend on water for fertilization Are covered with a thin cuticle.	p= 1 = 1
4.		hich of the following types of epithelia experiences the highest rate of earing?	
	A. B. C. D.	Stratified Ciliated Squamous	_
5.	Wh	hich of the following is a soluble fibrous protein?	
	A. B. C. D.	Myosin Collagen Myoglobin Fibrinogen	
6.		ich one of the following hereditary characteristics is known to be sex- ited?	
	A. B. C.	Haemophilia Baldness Albinism Colour blindness	

Scanned by CamScanner

1.	VV 11	nen one of the following is not a renewable natural	
	A.	Carbonate	V-
	B.	Petroleum	
	C.	Water	
	D.	Nitrogen.	
8.	The	e competitive exclusion principle attempts to explain why.	
	A. B. C. D.	Particular niche contains only one species Pioneer plants are not found in established communities. There are rarely more than five trophic levels in an ecosystem. The diversity of a habitat increases as succession proceeds.	
9.	Wh	nich one of the following is a non – nucleated cell?	
	A.	Thrombocytes	
	В.	Lymphocytes	
	C.	Leucocytes	
	D.	Phagocytes	
10.		nich one of the following is not a major source of genetic variation with ne pool?	in a
	A.	Crossing over	
	В.	Independent assortment	
	C.	Non-random breading	
	D.	Mutation	
11.		rafiltration occurs through slits of adjacent specialized cells of Bowman sule called.	's
	A.	Kupffer cells	
	В.	Leydig cells	
	C.	Macrophage cells	
	D.	Podocytes	
12.		ich one of the following couples is likely to produce a foetus suffering f l crythroblastosis?	rom
	A.	Rh ⁺ mother and Rh ⁻ father	
	B.	Rh mother and Rh father	
		Rh ⁺ mother and Rh ⁺ father	
	D.	Rh mother and Rh father	

A. White blood cells B. Nerve cells C. Muscle cells D. Secretory cells 14. The magnitude of the force that a caudal fin applies to the water during fish locomotion depends on the following except its
14. The magnitude of the force that a caudal fin applies to the water during fish locomotion depends on the following except its
A. Weight B. Speed of action C. Surface area D. angle of attack
15. Which of these factors would inhibit ADH release?
A. High fluid intake B. Low blood volume C. High blood sodium level D. Low fluid intake
 If cyclic phosphorylation was to operate alone the following would not occur except
A. ATP release B. Oxygen production C. activation of pigment system II D. reduction of carbondioxide
17. During excretion in insects, which of the following enter the malpighian tubules passively?
A. K ⁺ and Na ⁺ B. Carbondioxide and water C. Salts and water D. Uric acid and ammonia
 The following reproductive strategies have ensured success of angiosperms except
A. Having flowers. B. Double fertilization. C. Rapid sexual reproduction. D. Vegetative reproduction.

Scanned by CamScanner

19.	The extra embryonic membrane responsible for the embryo's homeostasis		
	B. C. D.	Yolk sac Amnion Allantois Chorion	
20.	The	first physical process that occurs during seed germination involves.	
	A. B. C. D.	Imbibition Osmosis Active transport Diffusion. base sequence on a section of the non-coding DNA strand is CGTAA base sequence on a section of the non-coding to the above bases?	AC.
21.	The Wh	ich of these are the complementary anticodons to the above bases?	
	A. B. C. D.	GCA,TTG CGU,AAC GCA,UUG GCU,AAG	
22.	The	e following are membrane-bond enzymes except	
	A. B. C. D.	Dipeptidases Maltase Trypsin Enterokinase	
23.	Wł	nich of these cells undergo diapedesis?	
	A. B. C. D.		
24.	Hy A. B. C. D.	Slight delay in closing all the potassium gates compared with sodiu Slight delay in closing all the sodium gates compared with potassiu More potassium and sodium ions pumped out of the axoplasm. More negative ions diffusing into the axoplasm.	m gates. m gates. Turn O
			Illino

25.	Inforn	nation from the hypothalamus reaches the anterior pituitary thou	ıgh.
	A. B. C. D.	The portal system Blood capillaries Neurosecretory cells Axoplasm.	
26.		ds in a rice field were exposed to scarecrow. For the first few day y got scared later ignored it. This is an example of	ys,
	A. B. E. F.	Imprinting Latent Learning Habituation Insight learning	
27.	Wi	nich one of the following is the main filtration barrier in the nephr	on?
	A. B. C. D.	Endothelium of the blood capillary Basement membrane of the blood capillaries. Epithelium of the renal capsule The podocytes of the renal capsule.	
28		aring the process of oogenesis, which one of these structures is formen the primary oocyte is enclosed by a single layer of cells?	med
	A. B. C. D.	Graafian follicle Theca Granulosa Primordial follicles	
29.	W	nich one of the following best describes tidal volume of a lung?	
	A. B. C.	breath in and out.	
30.	Wł	nich one of the following is the final hydrogen acceptor during nerobic respiration in animals?	
	A. B. C. D.	Lactic acid Pyruvic acid NAD Oxygen	

31.	Which of the following processes occurs in the bundle shealth cells?		
	A. B. C. D.	Fixation of carbondioxide by PEP. Formation of pyruvate from malate. Regeneration of PEP from pyruvate. Formation of malate from oxaloacetate.	
32.	par	nat would be the proportion of the F1 generation if a double recession of the F1 generation is a double recession of the F1 generation of the F1 generation is a double recession of the F1 generation of the F1 generation is a double recession of the F1 generation	ive oes
	A. B. C. D.	1:1:1:1 1:2:2:1 9:3:3:1 1:3	
33.	Du ma	ring excretion in insets, which of the following are reabsorbed in the lpighian tubules?	ne
	A. B. C. D.	Carbondioxide and water K ⁺ and Na ⁺ KHCO ₃ and water Uric acid and water.	
34.	Wh gla	nich one of the following is not true about the posterior pituitary and?	
	A. B. C. D.	Secretions reach it from the hypothalamus through nerve fibres. Information from the hypothalamus is through blood vessels. It does not synthesize any hormones. It releases two hormones.	
35.	Ma	le infertility may permanently arise from the following except.	
	A. B. C. D.	Sperms having abnormal morphology Auto immunity by the male to his sperms Azoospermia Premature ejaculation.	

36.		ne seeds may germinate when exposed to a period of cold treatment nown as.	nt. Tins				
	A.	Vernalisation					
	B.	Photoperiodism					
	C.	Stratification					
	D.	Dormancy.					
37.	The	pulling of limbs inwards towards the body is called					
	A.	Adduction					
	B.	Abduction					
	C.	Rotation					
	D.	Retraction	L				
	٠.	reduction					
38.	Wh	Which one of the following zones of an aquatic ecosystem has the highest					
		centration of organic materials?	1				
	Α.	Littoral zone					
	B.	Benthic Zone					
	C.	Profundal Zone					
	D.	Hyperlimnion Zone					
39.	Wh	nich one of the following processes describes autocatalysis?					
	A.	Prorennin — Rennin					
	B.	Chymotrypsin Chymotrypsin					
	C.	Procarboxypeptidase Carboxypeptidase					
	D.						
	D.	Trypsinogen Trypsin.					
40.	The	e feeding relationship between the colonial hydroid Hydractinia					
		inata and the hermit crab Pagurus bernhardus is					
	A.	Mutualism					
	B.	Commensalism					
	C.	Parasitism					
	D.	Saprotrophism					

SECTION B (60 MARKS)

41. The graph in figure 1 shows the relationship between absorbance and rate of photosynthesis when a chlorophyll molecule is shone by light of varying wavelengths in a flowering plant.

Fig. 1

 State the relationship between absorbance and rate of photosynthesis between

	i)	420 nm and 550 nm	(02 marks)
	ii)	600 nm and 660 nm	(02 marks)
b)		Explain the relationships in (a) above	(04 marks)

			••••••

	c)	Explain why a chlorophyll solution fluoresces when observed in			
	,	darkness and white light is shone through it.	(UZ marks)		
42.	a)	What is pest resurgence?	(02 marks)		
		······································			
	b)	Suggest reasons why pest resurgence arises when a broad-spectrum			
		pesticide is used in controlling pest population.	(06 marks)		
	c)	Give two other effects of prolonged pesticide applica	ation in		
		controlling pest population.	(02 marks)		

43. Figure 2 below shows the rate of contraction of two types of muscles for a human being who takes up an exercise from rest for 20 minutes.

Time/Min.	Rate of Muscle contraction		
1 ime/Min.	Cardiac Muscle	Skeletal Muscle	
0	12	4	
5	20	16	
10	50	32	
15	92	60	
20	100	10	

Fig. 2

a) i) Plot a suitable graph to represent the data in the table above on the squared paper. (04 marks)

© WAKISSHA Joint Mock Examinations 2012

	ii)	Explain the changes on the graph above.	(05 marks)
			• • • • • • • • • • • • • • • • • • • •
		•••••••••••••••••••••••••••••••••••••••	
	b)	From your knowledge of muscle action, state the advanta	
		cardiac muscle over skeletal muscle to a mammalian bod	y. <i>(01 mark)</i>
44	a)	What is chloride shift?	(02 marks)
6			•••••
			•••••
			••••••
	c) i)	Outline the main chemical events that take place in a red on reaching a respiring tissue.	blood cell (03 marks)
	iii)		
	iii)		events above.
	iii)		events above. (02 marks)
	iii)	How is a red blood cell adapted to the occurance of the e	events above. (02 marks)

	c)	(Give three change of a human being v	s that may occ who climbs a m	ur in the blood circula countain up to the pea	ntory system k in 5 days.
						(03 marks)
			•••••			

				*****************	•••••••••••••••••••••••••••••••••••••••	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
45	a)	Γ	Distinguish between	ı cell division a	and nuclear division.	(01 mark)
		••	***************************************	••••••		
					•••••	
						••••
	b)	E	xplain the role of n	nitosis in the de	velopment of a matur	e embryo sac. (03 marks)
		•••	••••••	•••••••	•••••	
		• • •	••••••	****************	***************************************	••••••
		•••		***************************************		
		****	• • • • • • • • • • • • • • • • • • • •		••••••	
		••••				
	c)	Sta		ollowing events in me		
			ision and the stage			6 marks)
			Event	Stage of occurrence	Importa	nce
		i)	Synapsis			
		ii)	Crossing over			
		iii)	Non-disjunction			
		iv	Cytokinesis			

Figure 3 below is a graph that shows the extent of precipitation that occurs when serum from different mammals is mixed with sensitized rabbit serum.

Fig. 3

a)	i)	Describe the trend of precipitation of serum from human to	lemur. (02 marks)
			(02 marks)
		·····	
	ii)	Explain how precipitates are formed when sensitized rabbit mixed with any mammal's serum	
		, and a solution	(03 marks)

	c)	i me amount of precipitate form	ed between
		chimpanzee and Lemur.	(03 marks)

	uman beings and	
i)	Chimpanzee	(01 mark)
ii)	Lemur	(01 mark)
		•••••••••••••

Name	Centre/Index No
Name of School	. Signature

P530/1
BIOLOGY
(Theory)
PAPER 1
July/August 2013
2¹/₂ hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education BIOLOGY (Theory)

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in both sections A and B

Section A: Answers to this section must be written in the boxes provided.

Section B: Answers to this section should be written in the spaces provided and not anywhere else.

No additional sheet(s) of paper should be inserted in this booklet.

	FOR EA	AMINERS' USE ON	INITIALS
SE	ECTION	MARKS	INITIALS
Section A:	1-40		
Section B:	41		
4	42		
	43		
	44		
	45		
	46		
TOTAL			

- SECTION A (40 MARKS) 1. Carbon dioxide is carried in the red blood cells of mammals in form of ... A. Carboxyhaemoglobin. B. Carbamino compound. C. Carbonic anhydrase. D. Haemoglobinic acid. 2. The process in the liver by which an amino acid is converted into a substrate which can be a raw material for release of energy is known as.. A. Deamination. B. Transamination. C. Phosphorylation. D. Glycolysis. 3. Which of the following wave length bands of light is least absorbed by chlorophyll? A. 450 - 500nm (blue). B. 600 - 650nm (yellow). C. 650 - 700nm (orange). D. 700 - 750nm (red). 4. Which one of the following influences the rate at which mammals expend energy? A. Liver. B. Pancreas. C. Adrenal cortex. D. Thyroid. 5. The urine that flows out of the collecting duct has its osmotic concentration nearest to that of the A. Proximal convoluted tubule. B. Distal convoluted tubule. C. Medulla. D. Cortex. The alimentary canals of carivores are relatively shorter than those of herbivores because. A. Their mainly protein diet is relatively easier to digest. B. They eat diet which is largely protein in nature. C. They have to maintain low weight to be able to chase prey. D. They eat little food at a time.
- Figure 1 below represents mitosis

	How long after the start of p their movement towards the A. O minutes. B. 15 minutes. C. 25 minutes. D. 30 minutes.	rophase do the chromo poles?	osomes split into chro	matids and begin
8.	Which one of the following infant whose blood cells have	e been destroyed?	ire complete blood tra	ansfusion to an
	A. Father Rh, Mother Rh-			
	B. Father Rh ⁺ , Mother Rh-			
	C. Father Rh, Mother Rh+			
	D. Father Rh+, Mother Rh+			
9.	Table 1 below shows change	es in nutrient content c	of seedlings during gen	rmination.
	Duration of germination	Fat	Glucose	1
	in days	% of dry weight	% of dry weight	
	0	71.4	0.0	
	2	63.9	-	
	5	48.8	3.1	1
	8	25.0	8.4	
	13	14.1	13.7	
	16	4.9	17.4	
	During the first 13 days of g	ermination, the respir	atory quotient (R.Q) v	vould,
	A. decrease.			
	B. increase.			
	C. remain constant.			
	D. fluctuate.			
50 18 N 1	Dry weight is the best metho	d of estimating growt	h in an organism beca	ause it,
10.	A. does not involve destroy	ing the organism.		
		mg the organism		
	B. is easier to determine.C. neither increases nor determine.	reases		
	D. is constituted of weight	of the protoplasm syn	thesized.	*
11.	Which one of the following	is the ovum developed	d from?	
	A. Primary oocyte.			
	B. Primordial germ cell.			
	C. Ooganium.			
	D. Secondary oocyte.			
	Which combination of phyla	consists of the most	advanced organisms	?
	 A. Tracheophyta and chord 	ata.		
	B. Tracheophyta and echin	odermata.		
	C. Tracheoplyta and anneli	da.		
	D. Chordata and cnidaria.			m Over
		KISSHA Joint Mock Exam	inations 2013	Turn Over
	♥ WA	KISSHA JOHN MOCK EXAM	munons 2015	

13. Which one of the following is not a Porphyrin?	
A. Haemoglobin.	
B. Chlorophyll.	
C. Cytochrome.	
D. Riboflavin.	
14. Prolonged menstrual periods may be caused by,	
A. high levels of progesterone.	
B. a decrease in production of follicle stimulating hormone.	1 1
C high levels of luteinising hormone.	
D. a deficiency of oestrogen.	
15. Surfactant used in treatment of lungs is meant to do the following EXCEPT:-	
A. prevention of friction of the lungs.	
B. killing microbes.	9
C. reduction of energy used to inflate the lungs.	
D. increasing the rate of oxygen diffusion.	
16. If oxygen is unavailable, the electron transport system fails mainly because;	
A. there will be no atp electron transport.	
B. hydrogen cannot be split to release electrons.	
C. reduced nad and fad cannot be oxidized.	
D. oxidised nad and fad cannot be reduced.	
17. Which one of the following occurs during inhibitory post synaptic potentials	
A. Excites post synaptic neurones.	
B. Excites presynaptic neurones.	
C. Cancels the effect of some excitatory post synaptic potentials.	
D. Released large amounts of transmitter substance.	
18. Which one of the following terms is used to refer to displacement of the oxygen	
hemoglobin dissociation curve by a change in pH?	
A. Bohr effect	
B. Decomposition	4
C. Chloride shift	
D. Alkaline tide	
19. Which one of the following statements about woody stems is incorrect?	
A. Secondary phloem accumulates to form the wood.	
B. The stem is organised into a central pith, wood and outer bark.	
C. Cork cambium produces water proof cork cells that become bark.	L
D. Woody stems contains secondary growth.	
20. Which one the following terms is used to refer to sexual reproduction in plants in	nvolving
two separate plants with separate sexes;	
A. Dioecy B. Bisexual	
C. Hermaphroditism	
D. Monoecy	
D. 1110100)	

21. Which one of the following cells are NOT diploid?	
A. Oogonia	
B. Primary oocytes	
C. Follicle cells	
D. Secondary oocytes	
22. The biological roles of a protein molecule is dependent on;-	
A. The sequence of amino acids it contains.	
B. The pattern of folding of the amino acids.	
C. Other protein molecules with which it is associated with.	
D. Its three dimensional shape.	
23. Which one of the following inhibits self fertilization in plants?	
A. Stamens and stigma mature at the same time.	
B. The monoecious condition.	
C. The dioecious condition.	
D. The hermaphrodite condition.	
24. In humans, albinism is recessive to normal pigmentation, if the frequency of the allele in a population is 10%. What would be the expected proportion of albinos	e albino s in the
population?	
A. 0.9	
B. 0.3	
C. 0.1	
D. 1.0	
25. The type of selection that can most likely lead to polymorphism within a popula	ition is
termed as;	
A. Artificial selection.	
B. Disruptive selection.	
C. Stabilizing selection.	
D. Directional selection.	
26. Which one of the following is an evolutionally effect of predation?	
A. Prey organism develops mechanisms that minimize predation.	
B. Predators starve to death.	
C. Prey organisms are completely eliminated.	
D. Predators become weaker.	
27. Which one of the following factors is least likely to contribute to the developm species?	ent of new
A. Chromosomal changes.	
B. Gene mutations.	
C. Environmental stability.	
D. Geographical isolation.	
D. Geographica tovana	

28. 1	Excessive use of pesticides is dangerous because;	
	A. They cause cutrophication.	
	B. They cause pest resistance.	
	C. They cause bioaccumulation.	
	D. They cause biomagnification.	
י טכ	Which one of the following theories best explains how double membrane organelle	s came
٠,٠	to exist in eukaryotes?	
	A. Endosymbiosis	
	B. Endometriosis	
	C. Endoparasitism	
	D. Endocytosis	
	Which one of the following secretions is produced by the anterior pituitary?	
	A. Antidiuretic hormone.	-
	B. Aldosterone.	
	C. Follicle stimulating hormone.	
	D. Oestrogen.	
	Bile production is stimulated by,	
	A. Gastrin	
	B. Cholecystokinin (cck)	
	C. Enterogastrone	
	D. Secretin	
32	Which one of the following are involved in cell-mediated immunity?	
J 2.	i) B- lymphocytes	
	ii) T – lymphocytes	
	iii) Inflammatory response	
	iv) Lysozymes	
	A. (i) and (iv)	
	B. (i) and (ii)	
	C. (ii) and iii)	
	D. (ii) and iv)	
33.	Figure 2 below shows the percentage in flowering of a plant at different light period	is

	The plant can be described as A. long day plant B. short day plant C. day neutral plant D. intermediate day plant	
34.	During exhalation in mammals, which of the following occurs: A. The external intercostal muscles relax while the internal intercostal muscles contract. B. The external intercostal muscles contract while the internal intercostal muscles. C. The diaphragm muscles contract D. The ribcage is pulled upwards and outwards.	
35.	When using the capture -mark-recapture method, during the release of the animals has to consider the following factors EXCEPT. A. release of animals in their inactive period B. scatter points of release throughout the habitat C. do not release near any danger D. releasing process should not damage the organism in any way.	s one
36.	 In DNA replication; each new A. single helix is composed of 50% protein and 50% DNA protein B. triple helix is composed of one of DNA strand and two new DNA strands. C. double helix is composed of one old DNA strand and two new DNA strands. D. double helix is composed of one old protein strand and one new protein strand. 	d.
37.	 Which of the following factors increase the rate of diffusion across a membrane? A. Less polarity of the membrane B. Large size of diffusing molecules C. Lower temperature D. High difference in concentration of the diffusing molecules. 	
38.	A cotton plant known to be heterozygous for a recessive gene defect which makes plant fail to produce seeds was self pollinated and gave rise to 500 seedlings. How many of the seedlings will fail to produce seeds? A. 150 B. 250 C. 125 D. 300	s the
39.	Which one of the following is not an advantage gained from innate evolutionary behaviour? A. Longevity of the organism. B. Survivorship of the organism. C. Learning by the organism. D. Biological fitness of the organism.	
40.	The function of the protractor muscles of a limb is to pull the limb A. forwards. B. backwards. C. sideways away from the body. D. inwards towards the body. **C WAKISSHA Joint Mock Examinations 2013**	Turn Over

Scanned by CamScanner

SECTION B (60 MARKS)

41.		arch and glycogen are important energy storage compounds in organisms.	(0.2
	a)	State three similarities in the structure of starch and glycogen.	(03marks)
	b)	Give three advantage at the standage and	mnounds
	U)	Give three advantages that make starch and glycogen suitable storage con	(03marks)

	c)	State the advantages of storing fat over glycogen.	(03marks)

	• • •		•••••
	d)	Explain why large herbivores like cows can not digest starch but depe	nd on
		microscopic bacteria to digest cellulose in the plant material they eat.	(02marks)

4		,	
42.	a)	With a specific example in mammalian females, explain what is mear	ıt
		by the term gonad.	(02marks)
			•••••
		• • • • • • • • • • • • • • • • • • • •	
	1.	Describe the second of the first of the firs	
	b)	Describe the gonadial activity in human females leading to productio functional Ova.	
		Tunctional Ova.	(05 marks)

		•••••••••••••••••••••••••••••••••••••••	•••••
		•••••••••••••••••••••••••••••••••••••••	
		ر میں۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔	
			Q

	c)	State two harmones which regulate gonadial activ	ity described in ((b) above;
		stating the specific role of each hormone.		(02marks)
		•••••		**************

		•••••		**********
	d)	Survey 1 to Cut I will all	:- (h) above in v	ariation:
	u)	Suggest one significance of the process described	in (b) above in v	(01marks)

			· · · · · · · · · · · · · · · · · · ·	
9				
				(01mark)
43.	a)	Figure 3 below shows the effect of carbon dioxide co	oncentration on	(- C -lant)
		photosynthesis of a rice plant leaf (a C ₃ plant) and th	at of sugar cane	(a C ₄ prant)
		compared. Study it carefully and use it to answer the	questions that ic	mow.
	80	†	Sugarcane at	
	7-7	†		
	mb '-r	ļ /	rice at high lig	oht intancity
	E 60		fice at high h	git interesty
	Co ₂ uptake (µmol h¹dm-2	† / /		
	upta	+ / /		
.•				
	40	+	Sugarcane at lo	w light intensity
			- rice at low light	intensity
		†[[]		
				
	0	100 210 310	410 51	0 610
	3574	Compensation points	Fig 3	
		(i) Define the term compensation point.	8-	(02marks)
		(.) 2		
				••••••
				(Mmarke)
		(ii) What four conclusions can you draw from the a	above results.	(04marks)
				Turn

		b) State any three differences in the photosynthetic process of C ₃ and	(US marks)
44	a)	What is summation?	(01 mark)
	b)	Describe the following types of summation	(02 1)
		(i) Temporal summation	(02 marks)
			•••••
		(ii) Spatial summation	(02 marks)
	c)	State two advantages of nerve transmission across chemical synapses	(02 marks)
		•••••	
	d)	What is the main distinction between classical conditioning and oper conditioning?	(UImark)
		•••••••••••••••••••••••••••••••	
		••••••	

	e)	State any two advantages of social behaliour to the organisms con	ncerned.
		T	(02 mark)
45.	a)	Briefly explain what is meant by the terms;	
		i) Endangered species	(01mark)
			(0.1
		ii) Extinction	(01mark)

	1972		on of species in
	b) i	State three ways numan activity has increased the rate	(03marks)
		the recent times.	

		••••••	
	.•		
	c)	Suggest three practical measures that can be put in place to prevent e	extinction of
	-,	species in your country.	(03marks)

	122	Explain why large predators are more likely to become extinct as cor	npared to
	ď)		(02marks)
		primary consumers.	
		••••••	
		······	

- 46. Wild rats are grey coloured while albino rats are white in colour. The results below are for breeding experiments involving the two species of rats:-
 - A. Mating albino rats with wild rats produced equal propotions of wild and albino rats
 - B. Mating wild offsprings from A produced litter of wild and albino rats in ratio of 2: 1 respectively.
 - C. Mating albino rats produced only litter of albino rats.
 - a) Using suitable symbols, work out the mating in B showing the phenotypic and genotypic proportions of the off springs. (04marks)

b)	Fron	your answer in a) above explain:-	
	(i)	How colour in rats is controlled	$(01^1/_2mks)$
	•••••		
	(ii)	The results for the matings A-C above	$(02^l/_2mks)$
	••••		
	••••		
	••••		
-1		two ecological significance of colour in organisms.	(02 marks)
C)			14 go 2000 - 1 (2000 00 00 00 00 00 00 00 00 00 00 00 00

END

Name,	Centre/Index No
Name of School	. Signature

P530/1 BIOLOGY PAPER 1 July/August 2014 2¹/₂ hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education BIOLOGY (Theory)

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

This paper consists of 40 questions in section A and 6 questions in section B.

Answer all questions in both sections A and B

Section A: Answers to this section must be written in the boxes provided.

Section B: Answers to this section should be written in the spaces provided and not anywhere else.

No additional sheet(s) of paper should be inserted in this booklet.

SECTIO	ON	MARKS	Examiners' initials & No		
Section A:	1-40				
Section B:	SECTION ection A: 1-40				
	42				
ŀ	43				
1	44				
1	45				
	46	227			
TOTAL					

SECTION A (40 MARKS)

Write the letter to the correct answer in the corresponding box. Each question in this section carries one mark

1. The AIDs virus cannot multiply outside a living cell because A. They are too small to reproduce. B. Not all of them contain DNA. C. They are unable to absorb raw materials from the surrounding. D. They are unable to synthesize their own DNA. 2 In order to survive in the sea, a marine teleost A. Loses water by osmosis and absorbs salts. B. Swallows water and absorbs salts. C. Swallows water and eliminates salts. D. Gains water by osmosis and eliminates salts. 3. Which of the following causes the closure of aortic valves during cardiac cycle in mammalian heart? A. Ventricular pressure falling below aortic pressure. Contraction of ventricles. C. Filling of atria with blood. Ventricular pressure rising above aortic pressure. Which of the following sets of inner ear parts constitutes the organ of corti? 4. Tectorial membrane, basilar membrane, sensory hair cells. B. Tectorial membrane, basilar membrane, auditory nerve. C. Tectorial membrane, middle canal, basilar membrane. D. Endolymph, Reissner's membrane, basilar membrane. A histologist would describe the layered, flat, scaly epithelium of the human skin as: 5. A. Simple pavement epithelium. B. Stratified columnar. Stratified squamous. D. Pseudostratified cuboidal. The enzyme that promotes mRNA synthesis in the nucleus is 6. A. DNA ligase. B. DNA polymerase. C. RNA ligase. D. RNA polymerase.

7. Figure 1 below shows the changes in sweet potato root tubers during their growth with time.

Fig. 1 starch growth respiration sugars 100 200 300 400
Time in days from start of formation of root tuber

	How many days after start of formation of root tuber should the tuber be harvested. 150	ed?
	B. 200 C. 250	
	D. 300	
8.	Which of the following influences the rate at which mammals utilize energy?A. Adrenal cortex.B. Thyroid.C. Liver.D. Pancreas.	
9.	Organisms which use the energy from the oxidation of substances already on ear fix carbon are called? A. Saprophytic heterotrophs. B. Photosynthetic autotrophs. C. Chemosynthetic heterotrophs. D. Chemosynthetic autotrophs.	th to
10.	In the root of a dicotyledonous plant, casparian strips are found in the A. Pericycle. B. Endodermis. C. Starch sheath. D. Xylem vessels.	
11.	Which of the following groups of animals have the most efficient system of gase exchange? A. Insects. B. Bony fish. C. Amphibians. D. Mammals.	ous
12.	The smallest biological unit that can evolve over time is A. A cell. B. An individual organism. C. A species. D. A population.	
13.	Which one of the following graphs correctly represents the absolute growth rate multi cellular organism?	of a
	A Absolute growth rate Time Time	
	Absolute growth rate Time Time	Turn ₂ Ove
	© WAKISSHA Joint Mock Examinations 2014	3

14,	A. Cholesterol.	nembrane?
	B. Phospholipids, C. Transmembrane proteins.	
	D. Glycolipids.	
15.	In humans, in ability to convert amino acid phenylamine to tryosine results condition known as	into a
	A. Sickle cell. B. Phenylketonuria. C. Down's syndrome.	
	D. Klinefelter syndrome.	
16.	During the final month of pregnancy, the uterus: A. expands to create more space. B. becomes more sensitive to oxytocin. C. becomes highly vascularised. D. develops umbilical cord.	
17.	 Which of the following is not an adaptation for photosynthesis in shade plan A. High chlorophyll content. B. Low compensation point. C. Thin leaves. D. Thick leaves. 	ts?
18.	Which of these substances are reabsorbed passively in the proximal convolutional actively in the distal convoluted tubule? A. Glucose. B. Chloride ions. C. Sodium ions. D. Water.	ted tubule
19.	 In the Calvin cycle energy is required during: A. Fixation of CO₂ by Ribulose biphosphate. B. Conversion of glycerate phosphate to triose phosphate. C. Conversion of Ribulose phosphate to triose biphosphate. D. The activation of the enzyme Ribulose biphosphate carboxylase. 	
20.	Mammals whose limbs have short thick bones are most likely to be adapted during A. Jumping. B. Slow locomotion. C. Running. D. Climbing.	for support
21.	 Which of these is the function of calcium ions during muscular movement? A. Bind to the blocking molecules causing them to move and expose the rebinding site. 	
	B. Bind to actin molecules in a way that prevents myosin heads from beconstrached to it.C. Supply energy for the flexing of the myosin head in the power stroke.	oming
	D. Untwist the helix stage so as to expose the myosin binding site.	

22. Impulses transmitted by optic fibres in the retina are generated by Bipolar neurones. Amacrine cells. B. C. Rods and cones. D. Ganglion cells. Which one of the following is not a phytochrome controlled physiological response 23. Seed germination. Root branching. B. C. Flowering. D. On set of senescence. 24. Which one of the following aids sperm penetration into the ovum during fertilization? Enzymes in the acrosome dissolving the jelly coat. B. Forward pressure of the tail forces it through the vitelline membrane. C. Their wedge shape and chemical attraction to the ovum. D. Ability to melt its way using its nucleic acid. 25. An investigation on the interaction of Paramecium and Didinum gave the results as shown in figure 2 below. Number of individuals 180 120 Paramecium Fig. 2 80 Didinum 40 0 Time in days From the results the extinction of Didinum could be explained by A. Paramecium is predators to Didinum so it ate them all. B. Didinum is out competed by Paramecium. C. Didinum is a predator to Paramecium so when its prey is extinct, it also becomes extinct. D. Paramecium is a parasite to Didinum so it causes all of them to fall sick and die. Which of the following is not true about the fossil record? 26. A. Only primitive fossil are found in oldest sediments. B. New fossil types mark changes in the environment. C. Recent fossils are much less advanced. D. Fossil types differ in each sedimentary rock layer. In a large natural ecosystem, competition between two closely related species over time 27. will usually result in; A. Equal numbers of each species persisting for a long time. B. Each species occupying a slightly different niche. C. Death of all members of one species within a short time. D. Hybridization between the two species resulting into a third species. © WAKISSHA Joint Mock Examinations 2014

20.	A horse that is hybrid for both traits has the genot pacer is bred several times with a black trotter and offsprings are obtained, what are the likely genoty A. CcTT x ccTT B. Cctt x ccTt. C. Cctt x ccTt	ype CcTt. If a horse who is a I always Chesnut trotters and	Chesnut
29.	D. CcTt x ccTt.Preparation of the uterine wall for implantation isA. Cerebellum, pituitary and ovaries.	influenced by the,	
	B. Hypothalamus, pituitary and ovaries.C. Uterus, ovaries and amnion.D. Pituitary, amnion and ovaries.		
30.	Locomotion in land animals must overcome force This force is; A. Inertia.	e that act to keep them station	ary.
	B. Drag.C. Aerodynamic force.D. Gravitational force.		
31.	Multicellular, nucleated heterotrophs that obtains surrounding belong to kingdom. A. Animalia.	food by absorbing nutrients	from the
	B. Prokaryotae.		
	C. Fungi.		
	D. Protoctista.		KONTANTAN I
32.	Which of the following is true about the secretion	and action of hormones	
	involved in digestion?		
	 Gastrin is secreted by the liver and promotes by the stomach wall. 	And the American State of the American State	
	 B. Chlolecystokin is produced by the duodenun to release bile. 		
	 C. Secretin is produced by the intestine and cau D. Enterogastrone is secreted by the ileum and operistalysis. 	and the property of the contract of the contra	
33.	Which of the following would not be found in the	e body cells of obligate anger	obes?
33.	A. Respiratory substrates.	e dody cens of dongate and	
	B. Plasma membrane.		
	Č. Ribosomes.		
	D. Acetyl co-enzyme A.		
34.	Birds associated with herds of buffaloes have a re	elationship with the buffalos	best
	described as; A. Commensalism.		
	CORTON VICTOR DATES		
	B. Symbiosis. C. Mutualism.		
	D. Parasitism.		12.700
	L. A MINISTER		

35.	III. The absence III. The presence IV. The moulting A. I,III & IV B. II,III & I	of thyroxine nec of thyroxine nec of a hard exosk thormone produ V	in the tracheoles, essary for metame eleton.	orphosis.		
36.	D. III & IV Which of the foll the anthers of an A. Gametophyte B. Archegonium C. Sporangium D. Saporophyte	owing in the life angiosperm? e. n.	cycle of the pteri	dophyte cori	responds to	
37.	Which embryoni	c membrane orig	ginates from poste	rior part of the	he alimentary	
	canal and servesA. Chorion.B. Allantois.C. Yolk sac.D. Amnion.	as an organ of re	espiration and nutr	rition?	ne annientary	
38.	The table I below	shows a comparis	on of some of the p	roperties of fo	our human skele	etal tissues.
	Table 1 A logical conclu A. Stiffness dep	Bone Cartilage Ligament Tendon sion from the abovends on strengtl	2.0 1.1 1.3 1.3 ove result is that;	14,000 15 20 190	Strength	
	C. Density con	tributes more to	stiffness than strer	igth.		
39.	Low level of oes A. Prolonged n B. Growth of C. Proliferation	d stiffness are no strogen in blood on nenstruation. Graafian follieles n of the uterme w n and repair of ut	of female adolesce .all.	ents may rest	ılt into	
40.	Figure 3 shows to plant root and sh	the effects of var	ious concentration	s of auxin in	the elongation	of the
	ST.	% stimulati	R	shoot		

© WAKISSHA Joint Mock Examinations 2014

Concentration of auxin in PPM

Turn Over

Which of the following conclusions is true based on the figure above?

- A. Required concentration of auxin for growth of the shoot is higher than the root.
- B. High concentration of auxin inhibits the growth of the shoot only.
- C. Only the shoot requires auxin to grow.
- D. The root and shoot require the same amount of auxin for growth.

SECTION B (60MARKS)

Write the answers in the spaces provided.

41. (a)	Describe the role of T ₄ cells in the human immune response.	(02marks)
		······

(b) Figure 4 below shows the development of an infection with human immunodeficiency virus (HIV) over a period of 10 years. Changes in the number of T₄ cells are also shown. Study the graphs and answer the questions that follow;

(i)	The state of the s	(03marks)
	,,	

(ii)	Compare the curve for the T ₄ cells with that for the HIV particles.	(02marks)
		•••••

		mber of HIV particles over the 10	year period.	(03marks)
	•••			
	•••			
42. (a)		the following ecological terms;		•••••••••••••••••••••••••••••••••••••••
()		ommunity.		701 - 15
	(1) 00	and and an about a constraint ♥ and a		(01mark)
	•••		***************************************	
	•••	•••••••••••••••••••••••••••••••••••••••		•••••••••
	(ii) Ec	ological niche.		(01mark)
	•••			

		terspecific competition.		(01mark)
	10000	- 20		
	15 13.		•••••••••••••••••••••••••••••••	
		······································		
	(IV) M	igrations.		(01mark)
	•••			•••••
	• • •			
(b)	Descri	be briefly the Lincoln index metho	od of estimating popula	tion size. (03½marks)
		•••••	***************	

	227240444	025000 1900 0 0 0 0		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••••••
		a' a r a c c		
		atline three disadvantages of using pulation size.	Lincoln index method	of estimating (03marks)
				(03111185)
	12.44			
	•••			••••••
Name Bearing	•••			
		ow shows the concentration of selected the even	ected ions in the cytopl	asm of an axon and in
the	muiu arc	ound the axon.	Concentration	on mol dm ⁻³
			Cytoplasm of axon	Fluid around axon
-	Table 2	Chloride (cl')	4	120
		Organic anions (e.g. protein)	163	29
		Potassium (k ⁺)	155	4

Turn Over

145

12

Sodium (Na⁺)

Stuc	ly the information in the table and answer the following questions;	
(a)	Compare the distribution of positively and negatively charges (i) within the cytoplasm of axon?	(02marks

		• • • • • • • • • • • • • • • • • • • •
	(ii) between the cytoplasm and fluid around the axon?	(02marks
	***************************************	• • • • • • • • • • • • • • • • • • • •
		••••••
(b)	Account for the difference in concentration of each ion as stated in (a) a	bove. (04marks
		•••••••
(c)		(02marks)
44 (2)	(i) D. C. and a town common form on	(01
44. (a)	(i) Define the term osmoconformer.	(01mark)
	(ii) Explain company lating in Galacce in 1 at a spin and freely water	n habitata
	(ii) Explain osmoregulation in fish occupying both marine and fresh water	(05marks)
		•••••
		··········
	•••••••••••••••••••••••••••••••••••••••	

(0)		arine teleost.	ve over the
	Ph	ysiological advantages.	(02marks)
	l.		
	2.		
	Eco	ological advantages.	(02marks)
	l.		
	2.		

45. Figur	re 5	below shows the rate of photosynthesis in two different plants over a	range of
light	inte	ensities.	
		Plant A	
		Fig. 5 Plant B	
		www.	
		Fig. 5 g	
		of b	
		gg //	
		O 20 40 60 80 100 Light intensity in Lux	
a)	Exn	blain;	
		the relationship between light intensity and the rate of photosynthesis	for plants
	. ,	A and B up to 50 lux.	(04marks)
			••••••
			• • • • • • • • • • • • • • • • • • • •
	ı,	••••••	
(i	i) v	why the rate of photosynthesis remains constant at very high light into	ensities?
-	-,	may are the or prictory mices remains constant at very might have	(01mark)
		•••••••••••••••••••••••••••••••••••••••	
	•	······································	
	٠.		
	••		

		b)	Giving one reason, state the plant which would grow best in a forest	
			Plant Reason.	
			Reason.	
		c)	State two benefits of photosynthesis to animals.	(02marks)
			L	
			2	
				ich coourc
46.	on th	ie X	of baldness in humans is controlled by two alleles B and b, none of wherever the sex chromosome.	
	Male	es w	ho are BB or Bb will be bald while bb males will not be bald. Female be bald and females who are Bb or bb will not be bald.	
	One chro	type mos e Xª	e of colour blindness is controlled by recessive allele found on the X -some. The dominant allele X^A leads to normal colour vision and the releads to colour blindness.	cessive
	Use	the s	symbols given above to answer the following question;	
	a)	Stat	te the possible genotypes of a; bald man who has normal colour vision.	(01 mark)
		(ii)	woman who is not bald but carries an allele for colour blindness.	(01 mark)

			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	΄,	visio	other and a father are heterozygous for baldness. The father has normal while the mother is a carrier for colour blindness.	nal colour (08marks)
		Usin	ng symbols;	(02marks)
	((i)	State the genotype of the parents.	
		1 9		ot hald
	(ii) S	Show the probability of a son to this couple being colour blind but n	
			·	· • • • • • • • • • • • • • • • • • • •
			······································	
		•		
		••		
		• •	END	

Name	Centre/Index No
Name of School	. Signature

P530/1 BIOLOGY PAPER 1 July/August 2015 2¹/₂ hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education BIOLOGY (Theory)

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

This paper consists of 40 questions in section A and 6 questions in section B.

Answer all questions in both sections A and B

Section A: Answers to this section must be written in the boxes provided.

Section B: Answers to this section should be written in the spaces provided and not anywhere else.

No additional sheet(s) of paper should be inserted in this booklet.

	FO	R EXAMIN	NERS' USE ONLY
SECTION		MARKS	Examiners' initials & No.
Section A:	1-40		
	41	. 40 .1 .2 .3 .3 .44	
	42		
	43		
Section A:	44		
	45		
-	46		
TOTAL			

SECTION A (40 MARKS)

Which one of the following is a typical feature of flowers in dicotyledonous plan	its?
B. The floral parts are arranged in groups of 4s and 5s. C. Their petals are fused. D. Usually petals are absent.	
In the mammalian body, regeneration is not possible in A. blood B. skin C. liver D. brain	
 Which of the following are reproductive adaptations in birds for terrestrial life? A. Parental care and shelled eggs. B. Feathers and shelled eggs. C. Feathers and lungs. D. Lungs and amniotic eggs. 	
Possession of spines on the hind limbs of some insects is to provide. A. Protection against enemies. B. Support for the lower limbs. C. Propulsion during takeoff. D. Grip during movements.	
Lateral inhibition in the mammalian eye is attributed to A. Rods and amacrine cells. B. Amacrine and horizontal cells. C. Horizontal and cone cells. D. Cones and rods only.	
 The structures responsible for active transport in the cell surface membrane are A. Carbohydrates. B. Cholesterol molecules. C. Proteins. D. Phospholipids. 	
Figure 1 below shows the rate of potassium ion uptake by slices of carrot tissues immersed in a potassium chloride solution at different temperatures. Fig. 1 Solution 1 30°C	
10 20 30 40 50 Time in hours	
The initial uptake of potassium ions in the first 10 (ten) minutes is by the proces A. Diffusion.	s of:
B. Osmosis.	
C. Pinocytosis D. Active transport.	
	They do not possess sepals. The floral parts are arranged in groups of 4s and 5s. C. Their petals are fused. D. Usually petals are absent. In the mammalian body, regeneration is not possible in blood B. skin C. liver D. brain Which of the following are reproductive adaptations in birds for terrestrial life? A. Parental care and shelled eggs. B. Feathers and shelled eggs. C. Feathers and shelled eggs. D. Lungs and amniotic eggs. Possession of spines on the hind limbs of some insects is to provide. A. Protection against enemies. B. Support for the lower limbs. C. Propulsion during takeoff. D. Grip during movements. Lateral inhibition in the mammalian eye is attributed to A. Rods and amacrine cells. B. Amacrine and horizontal cells. C. Horizontal and cone cells. D. Cones and rods only. The structures responsible for active transport in the cell surface membrane are A. Carbohydrates. B. Cholesterol molecules. C. Proteins. D. Phospholipids. Figure 1 below shows the rate of potassium ion uptake by slices of carrot tissues immersed in a potassium chloride solution at different temperatures. Fig. 1 The initial uptake of potassium ions in the first 10 (ten) minutes is by the proces A. Diffusion. B. Osmosis. C. Pinocytosis

٥.	vater in		
	A. B. C. D.	Higher concentration of molecular oxygen. Moist respiratory surface is not required. No energy is required for ventilation. Oxygen diffuses more slowly in air.	
9,	Che A. B. C. D.	mical signals that convey information between members of a species are Neurotransmitters Scents Pheromones Impulses.	
10.		cell organelle that tags proteins so that they can go to their correct destination elopment is; Dictyosome Ribosome Endoplasmic reticulum. Nucleus.	n during
11.		Pleiotropic Epistatic	ent in
12.	If:	25 50	males.
13		They lack sufficient fur to keep them warm. Their surface area to volume ratio is too high to support breathing.	s
14	A. B. C.	Thich one of the following best describes hardy – Weinberg principle? $ \begin{array}{ll} 1-P^2 = 2pq + q^2 \\ P^2 + pq = 1 \\ P^2 - 2pq + q^2 = 1 \\ P^2 + 2p^2 + q^2 = 0 \end{array} $	
15	A. B. C. D	 A breakdown of control of cell division by mitosis. Mass destruction of cells leading to swelling of tissue. 	by:

16,	mammal's eyes which reflects during dim light? A. Choroid epithelium B. Tapetum C. Corneal layer	a layer of cells found in cats and other nocturnal slight back into the eye and so improves night vis	sion
	D. Retina		
17.	Study table 1 below and answ	ver the question that follows.	
	table 1		
	Cell type analysed	Average DNA content / cell (10g)	
	X	0.0	
	Y	3.35	
	Kidney	6.70	
	Lung	6.70	
	 The correct identity of cell ty A. Heart cell and liver cells B. Spermatozoa and red blo C. Red blood corpuscles at D. Heart cell and spermato 	s. ood corpuscle. nd spermatozoa. zoa.	
18.	any further, when it is withinA. SporozoitesB. MerozoitesC. GametocytesD. Trophozoites	stages in the life cycle of the plasmodium cannot do the body of the female anopheles mosquito?	
19.	about five billion years. A. Cosmozoan B. Spontaneous C. Special creation D. Steady state	heories disregards the fact that the earth has existence	
20.	population. A. Stratosphere B. Trophosphere C. Mesosphere D. Atmosphere	layers greatly minimizes incidences of mutations v	
21.	 A. obtain oxygen for their B. obtain organic food sub C. obtain energy for their D. increase the level of nu 	ostances for their growth. food synthesis. trients in the soil.	
22.	 ecosystem is generally low? A. Most lions lack enough B. Lion's reproductive rate C. Lions obtain little energy D. Lion's life span is nature 	food. e is low. gy.	arai

3,	 Which of the following is not true during hormonal control of breathing? A. Impulse from chemoreceptors in the aorta and central arteries stimulate the respiratory centre to increase rate of inspiration. B. Stretch receptors in the bronchioles and bronchi monitor the amount of lung ventilation. C. Cerebral cortex allows voluntary control of over breathing. D. Vagus nerve carries impulses from the respiratory centre to stretch reception to stimulate inspiration. 					
:4.						
25.		ch of the followin	ng levels of protein le?	structure are der	monstrated by a	
		Primary	Secondary	Tertiary	Quaternary	
	A	V	X	Х	X	
	В	V	✓	X	X	
	C	V		√	X	
	D	√	✓	√	·	
27.	 A. ADP is present and intracellular acetylcholine is high. B. ATP is present and intracellular calcium is high. C. ATP is present and troponin is not bound to calcium ions. D. ADP is present and tropomyosin is released from intracellular stores. Which one of the following is an example of negative feedback? A. Uterine contractions during childbirth stimulate release of a hormone that stimulates more uterine contractions. B. A viral infection stimulates the hypothalamus to increase the set point for body temperature. C. High blood sugar concentration stimulate the release of a hormone insulin, which stimulates the sugars to move from the blood into cells. D. The body temperature of the desert Oryx rises during the hottest part of the day, 					day.
28.	What A. B. C. D.	Their membrane Their role in carl Their absorption	s bon fixation spectra.	s found in differ	ent forms of bacteria?	
29.		 D. Their role in acquiring energy. Which one of the following is the strongest evidence that a trait might be influenced by polygenic inheritance? A. F₁ offspring of parents with different phenotypes have an intermediate phenotype. B. F₁ offspring of parents with different phenotypes have the dominant phenotype. C. The trait shows qualitative variation. 				
		*	A WIPPONI			Turn Ov

30.	 Which one of the following sequences best describes the process of cellular respirations. A. Glycolysis, pyravate processing, citric acid cycle, ETS and chemiosmosis. B. Glycolysis, pyravate processing, ETS, citric acid cycle and chemiosmosis. C. Chemiosmosis, ETS, citric acid cycle, pyravate processing and glycolysis. D. Glycolysis, ETS, chemiosmosis, citric acid cycle and pyravate processing. 	-
31.	Suppose a drug was added to mitochondria that allowed free protons to freely pass through the inner membrane. Which of the following mitochondrial activities would most likely be inhibited? A. The Krebs cycle B. Oxidative photophosphorylation C. Electron transport chain.	
	D. Oxidative phosphorylation	
32.	Figure 2 below shows the effect of adding different percentages of cholesterol to a membrane on its permeability to glycerol with changes in temperature. Fig. 2	
	No Cholestrol	
	20% of lipids = Cholestrol	
	No Cholestrol 20% of lipids = Cholestrol 50% of lipids = Cholestrol	
	Temperature in °C The most appropriate conclusion from the graph is that;	
	A Membranes are less permeable to glycerol in the absence of cholesterol.	1
	B. Adding cholesterol to a membrane decrease its permeability to glycerol. C. Adding cholesterol to a membrane increases its permeability to glycerol. D. Permeability to glycerol depends on both the level of cholesterol and temperature.	
33.	Proteins that interact with DNA often interact with the phosphates that are part of this molecule. Which of the following types of amino acids would you predict to be present	
	in the DNA building sites of these proteins?	ĺ
	B Basic amino acids	
	C. Unchanged polar amino acids	
	D. Non polar amino acids. Which one of the following represents the correct sequence of the stages in the	
34.		
	A. Primary spermatocyte – secondary spermatocyte B. Primary spermatocyte – spermatids – secondary spermatocyte C. Primordial germ cell – primary spermatocyte – spermatids.	
	D Primordial germ cell - secondary spermatocyte spermatocyte	
35.	Which one of the following processes is exclusively physical?	
	A. Capillarity B. Root pressure	
	C. Active transport	
	D. Guttation. The following relate to the biochemical oxygen demand (BOD). The following relate to the biochemical oxygen demand (BOD).	
36.	The same of the population of deliver	
	(ii) Increase in the level of organic ponditor	6
	5 1 5 minutions 2015	•

A. (i) and (ii) B. (i), (ii) and (ii) C. (ii) and (ii)	d (iii)					
Which one of the f A. Transaminase B. Pepsin	following is the world's most com	mon protein?				
D. Nitrite reduct	ase.					
the application of l	cineun.		ollowing			
_	Ī					
Bud length in	Aper	c on + Kinetin				
Fig. 3	Time in days	→				
The results of this experiment show that kinetin: A. suppresses apical dominance in intact shoots. B. suppresses bud dormancy C. promotes apical dominance in intact shoots. D. promotes bud dormancy.						
water pollution in in table 2 below:	an environmental watch dog carri Mississippi river in northern USA	ied out an experimental surv and the results obtained are	ey on shown			
Sampling point	Distance down stream (Km)	B.O.D (PPM)	1			
1	0.0	1.6	1			
2	0.5	1.5	1			
3	1.0	7.0				
4	1.5	2.5	1			
5	2.0	3.0]			
Between which sar the river water. A. 1 and 2 B. 2 and 3 C. 3 and 4 D. 4 and 5	npling points did the watch dog re	esults show most purificatio	n of			
During a critical period young children assimilate the speech sounds of their parents into the universal human genetical patterns, so language acquisition appears to be A. imprinting						
	Total Control of the					
A STATE OF THE STA	anamadh)					
	© WAKISSHA Joint Mock Examination	2015	Turn Over			
	A. (i) and (ii) B. (i), (ii) and C. (ii) and (iii) D. (i) and (iii) Which one of the fa. Transaminase B. Pepsin C. Ribulose biph D. Nitrite reduct Figure 3 below shothe application of land the application of land A. suppresses application of land B. suppresses but C. promotes apid D. promotes but In the early 1930's water pollution in land the land land In the land 2 Sampling point 1 2 3 4 5 Between which santheriver water. A. 1 and 2 B. 2 and 3 C. 3 and 4 D. 4 and 5 During a critical pethe universal human A. imprinting B. associative lead C. fixed action particular pethe universal human A. imprinting B. associative lead C. fixed action particular pethe universal human A. imprinting B. associative lead C. fixed action particular pethe universal human A. imprinting B. associative lead C. fixed action particular pethe universal human A. imprinting B. associative lead C. fixed action particular pethe universal human A. imprinting B. associative lead C. fixed action particular pethe universal human A. imprinting B. associative lead C. fixed action particular pethelication permits and the pethelication	B. Pepsin C. Ribulose biphosphate carboxylase D. Nitrite reductase. Figure 3 below shows the promotion of lateral bud g the application of kinetin. Apex Fig. 3 Time in days The results of this experiment show that kinetin: A. suppresses apical dominance in intact shoots. B. suppresses bud dormancy C. promotes apical dominance in intact shoots. D. promotes bud dormancy. In the early 1930's an environmental watch dog carriwater pollution in Mississippi river in northern USA in table 2 below: Table 2 Sampling point Distance down stream (Km) 1 0.0 2 0.5 3 1.0 4 1.5 5 2.0 Between which sampling points did the watch dog rether river water. A. 1 and 2 B. 2 and 3 C. 3 and 4 D. 4 and 5 During a critical period young children assimilate the universal human genetical patterns, so language a imprinting B. associative learning C. fixed action pattern D. habituation	A. (i) and (ii) B. (i), (ii) and (iii) C. (ii) and (iii) D. (i) and (iii) D. (i) and (iii) D. (i) and (iii) D. (i) and (iii) Which one of the following is the world's most common protein? A. Transaminase B. Pepsin C. Ribulose biphosphate carboxylase D. Nitrite reductase. Figure 3 below shows the promotion of lateral bud growth in intact pea shoots for the application of kinetin. Apex Apex Apex on + Kinetin Apex Apex on + Kinetin Apex C. promotes apical dominance in intact shoots. B. suppresses bud dormancy C. promotes bud dormancy C. promotes bud dormancy In the early 1930's an environmental watch dog carried out an experimental survater pollution in Mississippi river in northern USA and the results obtained are in table 2 below: Table 2 Sampling point Distance down stream (Km) B.O.D (PPM) 1 0.0 1.6 2 0.5 1.5 3 1.0 7.0 4 1.5 2.5 5 2.0 3.0 Between which sampling points did the watch dog results show most purification the river water. A. 1 and 2 B. 2 and 3 C. 3 and 4 D. 4 and 5 During a critical period young children assimilate the speech sounds of their part the universal human genetical patterns, so language acquisition appears to be A. imprinting B. associative learning C. fixed action pattern D. habituation			

SECTION B (60 MARKS)

41. (a)	Def	fine leaf area index (LAI)?	(01mark)
(b)	Fig lead	gure 4 below shows changes in the rates of productivity and respiration f area index of a banana plant. Study it carefully and answer the question	with the
		low:	
	Fig	productivity	
		Rate of Wet Primary productivity Respiration Respiration	
		producti	
		Leaf area index of banana	
	(i)		
		productivity between points: A and B	(02 marks)
	•	•••••••••••••••••••••••••••••••••••••••	
		B and C	(05 marks)
		••••••	
			••••••
	(ii)	State the equation that shows the relationship between gross primar	
		productivity, net primary productivity and respiration.	(01 mark)
		•••••••	••••••••
			· · · · · · · · · · · · · · · · · · ·

		(iii) Which one of these quantities will give the best indication of the mass of dry		
		matter produced by the banana?	(01 mark)	
42.	(a)	State four distinguishing features of angiosperms.	(04 marks)	

	(b)	Describe any three:-		
	(-)	(i) features of seed plants that have contributed to their succes	s on land?	
			(03 marks)	
		an type I the land a land and a land a thoir mode		
		(ii) major differences between plants and animals in their mode and development.	(03 marks)	
			••••••	

		••••••		
		***************************************	·······	

43.	(2)	What are target cells?	(01 mark)	
٠, ٦	(4)	Wildia die die geste state		
	(1-)	Euglain:	***************************************	
	(b)	Explain; (i) any two mechanisms by which hormones bring about cellu	lar response	
		in target cells.	(07 marks)	

			-	
			Turn Ove	
		© WAKISSHA Joint Mock Examinations 2015	9	

			a target cell.	(02 marks)
		~		_1:_:do
44.	(a)	Stat	te two outstanding structural differences between lipids and phosph	(02 marks)
				(02 marks)
		••••		
	<i>a</i> >			
	(b)		e respiratory quotient (RQ) for a resting person is approximately 0.8	
			reised vigorously for two (2) minutes and his RQ was measured at	
		Fig.	ervals for 40 minutes. The results were plotted as shown in figure 5	below.
		rig	.3	
			$\hat{\mathbb{Q}}^{2}$	
			Respiratory quotient (RQ)	
			igi / /	
			률 // \	
			£ 17 \	
			spir	
			88	
			0 4 8 12 16 20 24 28 32 36	
			Time in minutes after end of exercise	
	,	(i)	Explain the variation in RQ up to the fourth minute after the exer	rcise.
				(02 marks)
				•••••
		(ii)	From the graph; determine the time taken for the RQ value of the	e man to
		, ,	remain below the normal. Show your working.	(01mark)
				· · · · · · · · · · · · · · · · · · ·
				• • • • • • • • • • • • • • • • • • • •
		(iii)	Explain the decline in the RQ value below the normal for the per determined above.	
			determined above.	(03 marks)
				•••••
				••••
			The American description of the Control of the Cont	
				••••••

(c)	What is the fate of the pyruvic acid former plant cell.	ed during anaerobic respiration	in a (02 marks)
5. (a)	Describe how the following are brought:	about during locomotion in a f	ish.
	(i) Directional control during propulsion	on.	(03 marks)

	(ii) Eliminating drag during propulsion	1.	(04 marks)

a) State three ways in which the structure	of a long bone such as a femu	ir and the
(stem in a herbaceous plant are structura	ally similar.	(03 marks)
	• • • • • • • • • • • • • • • • • • • •		
46. T	able 3 below shows the results of an exper	iment carried out on the blood	sucking bug
40. 1	f genus Rhodinus. Study the information in	n the table and answer the que	stions that
	ollow:		
	Table 3:		
Ī	Experiment	Results	
1	1. Blood sucked by Bug, then head cut	Bug survives briefly, no mo	ouiting
	off after 2 days later	Bug survives longer and m	oults
	2. Blood sucked by Bug, then head cut		
	off 7 days later 3. Brain from a moulted larva	Larva moults but does not	develop into a
	3. Brain from a mounted farva of	adult.	

Turn Over

transplanted into another larva of

same age.

(a)	Expla	the observed results in experiments 1 and 2.	$(02^1/_2 \text{ marks})$
	Expe	riment 1	
			* * State of the displacement should be a first of the state of the st
		eriment 2	
		······································	
	(ii)	the role of the brain in insect development as observed in expe	

(b) Sug	ggest; one way the larva can be induced to develop into adult.	(01 marks)
	(ii)	four ecological significance of larvae in the life of a species.	
			·······
		END	2

Name	Centre/Index No.
Name of School	. Signature

P530/1 BIOLOGY PAPER 1 July/August 2018 2¹/₂ hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education BIOLOGY (Theory)

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

This paper consists of 40 questions in section A and 6 questions in section B.

Answer all questions in both sections A and B

Section A: Answers to this section must be written in the boxes provided.

Section B: Answers to this section should be written in the spaces provided

and not anywhere else.

No additional sheet(s) of paper should be inserted in this booklet.

	FC	R EXAMIN	VERS' USE ONLY
SECTION		MARKS	Examiners' initials & No.
Section A:	1-40		
	41		
	42		
	43	=	
Section B:	44		
,	45		
	46		
TOTAL			

SECTION A (40 MARKS)

Write the letter corresponding to the most correct answer in the box provided on the right.

1.	Whic	ch of the following structures is present in both eukaryotic and Prokaryotic cells.	
	A. B.	Mitochondria.	
	C.	Ribosomes.	
	D.	Pili. Centrioles.	
	D.	Centrioles.	
2.	An u	nbranched polysaccharide is made up of glucose monomers joined together by β	
	(beta	1 – 4) linkages. This polysaccharide could be:	
	A.	amylopectin.	
	В.	cellulose.	
	C.	amylose.	
	D.	glycogen.	
3.	Whic	h of the following statements about the sodium-potassium pump is correct?	
	A.	It results in a higher concentration of sodium ions inside the cell	
	В.	The transport protein has an affinity for sodium ions in the cytoplasm	
	C.	The transport protein has an affinity for sodium ions in the	
		extracellular fluid.	
	D.	It results in a higher concentration of potassium ions outside the cell.	
4.	Which	h of the following statements is incorrect about fungi?	
	A.	they are all eukaryotic.	
	B.	some are photosynthetic.	
	C.	they all have rigid cell walls.	
	D.	most are filamentous.	
5.	Ferns	undergo alternation of generations in which a;	
	A.	dominant sporophyte alternates with an independent gametophyte.	٦
	В.	dominant gametophyte alternates with a dependent sporophyte.	1
	C.	sporophyte and a gametophyte have equal life spans.	
	D.	gametophyte produces gamete by meiosis.	
6.		se in the dark form of the peppered moth was as a result of the;	_
	A.	dark moths migrating to areas which offered the best camouflage.	
	В.	change in selection pressure.	
	C.	change in the prey species taken by birds.	
	D.	increase in the mutation rate.	
7.	Figure	l below shows an outline of the carbon fixation stage of photosynthesis	
	substa	nce X is;	
	Fi	g. 1 GP hydrogen	
		Carbon	
		Carbon dioxide Substance X	
		RuBP Substance X	

A. ATP. B. Glucose. C. Oxygen. D. Water. Figure 2 below shows the effect of increasing light intensity on the rate of 8. photosynthesis in a green plant. Fig. 2 Rate of photosynthesis Light intensity Which of the following factors limit the rate of photosynthesis between points X and Y? Light intensity and oxygen concentration. A. Temperature and oxygen concentration. B. Temperature and carbon dioxide concentration. C. Carbon dioxide concentration and light intensity. D. Which of the following would not be formed during anaerobic breakdown of glucose 9. by yeast? water. A. ATP. B. carbondioxide. C. ethanol. D. A plant becomes etiolated when it 10. is grown in soil with low nitrogen levels. A. is grown in the dark. B. is treated with gibberellic acid. C. has its apical bud removed. D. A species that plays a role vital for the survival of other species in an ecosystem is 11. called a keystone species. A. a native species. B. an invasive species. C. a dominant species.

D.

Figure 3 below shows three adjacent cells and their water potentials (ψ). 12, Cell A Cell C w = .6kPaFig. 3 w = 10kPaCell B $\psi = 12kPa$ Which of the following is the correct sequence of water movement between all the cells? $\rightarrow C \longrightarrow B$ A. A - $C \longrightarrow B \longrightarrow A$ B. $A \longrightarrow B \longrightarrow C$ C. B _____ A ____ C D. Lack of relaxation between successive stimuli in a muscle is referred to as 13. A. tonus. В. spasm. C. fatigue. D. tetanus. Which of the following features is NOT present in the phylum arthropoda? 14. Jointed appendages. A. Chitinous exoskeleton. B. Parapodia. C. Metameric segmentation. D. Reduction in pH of blood will lead to; 15. the release of bicarbonate ions by the liver. A. reduction in the rate of heart beat. B. reduced blood supply to the brain. C. a decrease in the affinity of haemoglobin for oxygen. D. A triglyceride is composed of; 16. three glycerol and three fatty acid molecules. A. three glycerol and one fatty acid molecule. B. one glycerol and three fatty acid molecules. C. one glycerol and one fatty acid molecule. D. In mammals, which of the following blood vessels would normally carry the largest 17. amount of urea? Hepatic portal vein. A. Renal vein. В. Dorsal aorta. C.

D.

Hepatic vein.

10.	A	regous structures are a result of	
	Α.	stabilizing selection.	
	В.	divergent evolution.	
	C.	convergent evolution	
	D.	shared ancestry.	
19.	Gau	se's principle of competitive exclusion states that	
	A.	larger organisms and the William States that	
	В.	larger organisms exclude smaller ones through competition.	
	D.	more abundant species will exclude the less abundant species	
	0	through competition.	
	C.	competition for the same resources excludes species having	1 1
	deterado	different food preferences.	
	D.	no two species can occupy the same niche indefinitely for the	
		same limiting resources.	
20.	The	type of gaseous exchange structures in organisms would greatly be in	fluenced by:
	A.	metabolic rate and respiratory medium.	nucliced by,
	В.	habitat and metabolic rate.	
	C.	body size and metabolic rate.	
	D.	habitat and size of cuticle.	
	υ.	habitat and size of cuttere.	
21.	Asce	ent of water in a tall plant on a result of all a	
	A.	ent of water in a tall plant as a result of the transpiration stream is due root pressure.	to;
	В.	adhesion.	
	C.	100 V 20 V 30 V 30 V 10 V 30 V 10 V 10 V 10 V 1	
		cohesion.	
	D.	capillarity.	
22.	T	high afth fall to the fall to	
22.	Cti-	hich of the following parts of the mammalian testis is the Interstitial C	Cell
	Sum	ulating Hormone (ICSH) produced?	
	A.,	leyding cells.	
	B.	primordial germ cells.	
	C.	sertoli cells.	
	D.	seminiferous tubules.	
22			
23.	Whic	th of the following parts of the mammalian ear are absent in the ear of	an
	amph	ibian?	
	Α.	Ear drum and pinna.	
	В.	Pinna and auditory canal.	
	C.	Eustachian tube and pinna.	
	D.	Auditory canal and Eustachian tube.	
	5227		
24.	The s	ecretions of the hypothalamus are transported to the posterior lobe of	
	· the pi	tuitary gland through	
	A.	portal blood vessels.	
	B.	pituitary stalk.	
	C.	capillary network.	
	D.	nerve fibres.	
		29 A CO CO 1 E A CO E - SA PROPOSICION (CO E E E E E E E E E E E E E E E E E E E	

25.		l below shows the results of										
	of 1m	f certain plant species in Ziil 2. From the results the popul	ka wl	nose	total l	and a	area i	s 10,0	Juum !e•	usir usir	g aq	uaurat
	Table	e 1	ation	i size	or th	e pia	n spe	cies	15,			
		ws made	1	2	3	4	5	6	7	8	9	10
	Num	ber of plants in each throw	53	74	40	63	56	53	70	72	57	53
	A.	600,000 plants.										
	В.	60,000 plants.										
	C.	6000 plants.										- 1
	D.	60 plants.										
26.	The t	ype of learnt behavior that re	enlte	due	to co.	ıtin	0110 #0		ion of	fo ati		a that is
	not as	ssociated with a punishment	or re	ward	is	mnu	ous re	penn	ion oi	a su	muiu	5 that 15
	A.	associative learning.									_	
	B.	latent learning.										
	C. D.	insight learning. habituation.										
	D.	nation.										
27.	Whic	th of the following is NOT u	sed t	o cla	ssify a	raan	iema	in leie	. a d a		!	4.0
		the type of pigment prese	nt.				151115	III KII	igaon	n prod	ocus	la?
	B.	The type of locomotory str	ructu	re if p	oresen	ıt.						
	C. D.	Mode of nutrition.										
	D.	Type of cell wall.									L	
28.	Ripe	ning of fruits in plants is cau	sed b	υ								
	A.	Auxins.		- 5								
	В.	Gibberellins.										
	C. D.	Ethene.										
	D.	Cytokinins.				(2)					Al Spin	
29.	Duri	ing locomotion in an earthwo	orm, v	when	the ci	rcula	r mus	cles i	contr	ect the		
	4.4.	iongitudinal muscles cont	ract.			····	ıı ııru.	ocies (contra	act the	,	
	B. C.	longitudinal muscles beco	me s	tretch	ied.							
	D.	chaetae are extended. pressure of coelomic fluid										
	Δ.	pressure of coeffinite fillio	reau	ices.								
30.	Whi	ich of the following hormone	s stir	nulat	es the	liver	to sv	nthes	ize hi	ilo ric	h in	
	11) (1	ogen carbonate;					,	ittico	ize o	iic iic	11 111	
	A. B.	Gastrin.										
	C.	Cholecystokinin. Secretin.										
	D.	Insulin.									L	
31.	The	proportion of a recessive all	ele ir	ı a ge	ne po	ol is	0.1, v	vhat i	s the	prono	rtion	of the
	pop	aradon with the dollimant a	llele?	_						p-opo		or me
	A. B.	0.36 0.9										
	E. C.	0.18						1				
	D.	0.99										

32.	because they.	
Astres	A. are suppressed by soil during upward growth.	
	B. do not get enough water.	
	C. exhaust their food reserves before emerging.	
	D. do not get enough air.	
33.	Which one of the following is NOT a trend in seral succession?	
	A. Increase in the proportion of woody parts of plants.	
	B. Increase in the ratio of respiration to photosynthesis.	
	C. Increase in the proportion of leaves to bark and wood.	nts.
	D. Decrease in the proportion of herbaceous plants compared to other pla	
34.	Sexual reproduction is important for evolution because	
	A. it introduces new genotypes in a population.	
	B. it brings about population explosion.	
	C. more offsprings are produced that survive to adult hood. D. more offsprings are produced to replace the old ones.	
A TOTAL	D. More offsprings are produced to replace we	
35.	Digestion of fats is NOT possible in the human stomach because	
	A. lipases become active within a narrow range of pH.	1
	B. pH of the stomach is too low for lipases to act on fats.	
	C. bile salts that emulsify fats are absent in the stomach.	
	D. fat digestion is only possible in the duodenum.	
36.	Figure 4 below shows the behavior of chromosomes during melosis	
	Ω Ω	
	Fig. 4	
	$n \leftarrow x$	
77	The region marked X represents	
	A. Chiasmata.	
	B. Non sister chromatids.	
	C. Homologous chromosomes.	
	D. Sister chromatids.	
27	During the process of photosynthesis in the Z - scheme, the reaction centre	of
37.	chlorophyll P680 is reduced with electrons that originate from	01
	A. Water.	
	B. NADPH.	
	C. P700.	
	D. Ferredoxin.	
38.	Which one of the following situations is likely to have no immediate effect	on body
	temperature?	6.5
	A. Increase in environmental temperature.	7
	B. acclimatization.	
	C. Release of thyroxine.	
	D. Perspiration.	
	D. III. I I I I I I I I I I I I I I I I	Turn Over
	© WAKISSHA Joint Mock Examinations 2018	7

39.	If genes C and D are on the same pair of homologous chromosomes and exhibit recombination, the number of phenotypic types from a cross of two individuals heterozygous for both genes will be; A. one. B. two. C. three. D. four.
40.	Which one of the following will be virtually absent in a highly industrialised area? A. Lichens. B. Bryophytes. C. Algae. D. Ferns.
	SECTION B (60 MARKS)
41.	Figure 5 below shows the rate of glucose reabsorption and excretion from a mammalian kidney in relation to the glucose concentration in the plasma.
•	Glucose excreted Glucose excreted Glucose reabsorbed Glucose reabsorbed Plasma glucose concentration in mg100cm ⁻³
	From the graph, compare the rate of glucose reabsorbed with that excreted. (04 marks)

con i)	plain the shape of the curve for glucose reabsorption when the centration is between 0 to 200mg100cm ⁻³	(02 marks
•/		
ii)	over 400mg100cm ⁻³	(01 mark
In w	which part of the nephron is glucose reabsorbed?	(01 mark
Exp	lain why glucose may appear in urine of an individual.	(02 marks)
		(01 mark
Defi	ne the term absorption spectrum.	(01 mark
_	ne the term absorption spectrum. two; evidences that show that photosynthesis is a two stage pro-	(01 mark)
State		
State		ocess.(02 marks)

Describe the Hatch-slack pathway.	(05 marks

43. Figure 6 below shows the relationship between the levels of prothoracicotrophic hormone (PTTH) or brain hormone in the brain and in the blood of a silkworm first at 3°C and later transferred to a temperature of 25°C with time of its development from pupa to adult. Study the figure carefully and use it to answer the questions that follow.

a) Compare the levels of PTTH or brain normone in the brain and blood of silkworm during the study period. (04 marks)

	-			•
	-			
b)		Account of the si	t for the relationship between the levels of PTTH in the brain alkworm during its development from pupa to adult.	and blood (05 marks)
	8=			
	,			
			t .	
	•			
	c)	State	any one significance of growth and development in organisms.	(01 mark
4.	a)	What	t is meant by the following ecological terms.	
1.	a)	i)	Biomass	(02 marks
		ii)	Productivity	(02 marks
		11)	1 Toddouvier,	(oz marks

Explain the advanta	ges a primary consumer has over a	higher consumer
		(02 1
•		
second capture of 25	y to determine the population of fi ed and released back into the pond 0 fish was made of which 100 fish	sh in a pond, 200 fisl . After three weeks, a
Calculate the populat	ion of fish in the pond.	were marked. (02 m

45. Figure 7 below shows the effect of concentration difference on the rate of transport of ions on either side of the cell membrane for three different types of transport. Study the figure carefully and answer the questions that follow;

facilitated diffusion.	(03 mark
Explain the difference in the rate of transport of ions for active trans diffusion and facilitated diffusion at no concentration difference.	sport, (04 marks
Suggest what will happen to the rate of transport for active transport respiratory poison like potassium cyanide was added? Give a reason answer.	if a for your (02 marks)
State two other factors that would affect the rate of transport of substancross cell membranes other than those mentioned above.	ances (02 marks)

46.	a)	Distinguish between phenotype and genotype. (02 marks)				
	b)	In gui	In guinea pigs, there are two alleles for hair colour, black and white and also two			
		pheno	alleles for hair length, short and long. In a breeding experience all the F ₁ phenotypes produced from a cross between pure breeding, short black-haired and pure breeding long white-haired parents had short black hair.			
		i)	With a reason, state which alleles are dominant? (02 marks) Allele/s;			
			Reason;			
		ii)	Using suitable genetic symbols, determine the expected proportions of F ₂ phenotypes. (06 marks)			
	,,					