Name	 			Signature		
	 20,000	200000	T		183100C	
School	 			Index No.		

545/2 CHEMISTRY Paper 2 July/August 2018 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES;

- Section A consists of 10 structured questions. Answer all questions in this section.

Answers to these questions must be written in the spaces provided.

Section B consists of 4 semi - structured questions. Answer any two questions from this section.

Answers to section B must be written in the answer booklet/sheets provided and stapled at the back of the question paper.

Show all your working clearly in both sections.

Where necessary use;

[Mg = 24 Ag = 108, C = 12, O = 16, H = 1, Molar gas volume at s.t.p = 22.4dm³]

٠,٠			-	i	-	U UA	1	er's u	oc om	<u> </u>	. 6 7.5	8.7	- e 350	
1	. 2	3	4 .	5	6	7	8.	9	10	11	12	13	14	Total
								1 .		•	20-	1.	-	g.
	1												1963 8	
			1								970		·	Kent e

SECTION A

Answer all questions in this section.

(1 m
a res
nark
 nark)
ark)
ks)
n
rk)
CK I
.:. —

	ii)	Write the equ	nation fo					ie tube.	(1/2	mark
			*27					<u> </u>		•
b)	Gas Y.	was passed o	over heat	ed coppe	er (II) ox	ide.	·`.: <u>"</u> .		(11/2	mark
		Write the eq				***	ace.			
							I Fus			
c)	The re solution	sidue in (a) von, aqueous a State what v	mmonia	was add	lilute hyd ed drop	lrochlori wise unti	c acid ar I in exce	nd to the	resultant (1 m	ark)
	ii)	Write the io	nic equa	tion for t	he reacti	on that to	ook place		(1 ¹ / ₂ m	arks)
	"							· · · · ·		
3. a)	Defin	e the term ba	sicity of	an acid.					(1 п	nark)
			•				3			
b)	State i)	one example Dibasic	in each o	case of a	mineral a	cid that	is;	ũ.	(111	nark)
* 8	ii)	Mono basic							(1 m	ark)
c)	i)	Write the exammonia.	quation fo	or the rea	ction bet	ween the	acid nan	ned in b(i) and aque (1 ¹ / ₂ mar	ous :ks) ·
2 //4		* * * * *				, A				2 X
	ii)	State one us	se of the	product i	n c(i) abo	ove.			(¹ /2ma	irk)
The elei	figure b	elow shows p ed.	oart of the	e periodio	table. T	he letters	are not t	he usual	symbols of	the
		· · · II ·	III :	IV	V	VI	VII	VIII		
						L		Υ .		
18 E			М		н	1.				
		K		J			P			
	·	Z		3 Mg						

001	to belonging to the group of;
a)	Give the general name given to the elements belonging to the group of;
	i) X
	ii) Z.
	iii) P. (1½mark) Arrange elements F, K, M, X and Z in order of their increasing reactivity (1 mark)
b) .	Arrange elements P, K, W, A and Z M of the
c)	State whether the compound formed between the following pairs of elements conduct or do not conduct electricity. i) J and P
	Mand I
d)	Name the conducting species in; (1/2mark)
	i) Element Z(1/2 mark)
· ·	ii) Compounds formed between M and L
	(1 mark)
5. a	- c Molor age volume
13	
	the acquation
l.	Silver nitrate crystals decompose on heating according to the equation. $2AgNO_3(s) \longrightarrow 2Ag(s) + 2NO_2(g) + O_2(g)$ Calculate the mass of silver nitrate required to produce 448cm ³ of nitrogen dioxide. (Ag = 108, N=14, O = 16, 1 mole of a gas occupies 22.4dm ³ at s.t.p) (2 ¹ / ₂ marks)
	Suggest one anion that can be identified by silver nitrate solution and state the observation. (1 ¹ / ₂ marks)
All Sales	A mixture of sulphur and concentrated nitric acid was heated in a round bottomed flask (1 mark) State what is observed

٠			<u> </u>
b)		aseous product in (a) above dissolved in water to form two a	
* 07	1)	Name the two acids formed.	(1 mar
	ii)	Write an equation for the reaction in b (i) above	(1½mark
			· · · · · · · · · · · · · · · · · · ·
a) .	Chlor	ine gas can be prepared in the laboratory by heating concentra	ated hydrochloric
		and substance Z.	
	i)	Identify Z.	(¹/₂mark
	a to a		
	3		
	ii)	Write the equation for the reaction leading to the formation of	of chlorine.
	11)	Millo mie education res and remainer several several	
	11)	Willo the equation for the constitution of	(1 ¹ / ₂ marks)
	,	Willouine equation for the control of the control o	
II. (746 317			(1 ¹ / ₂ marks)
b)	Dry c	chlorine gas was passed separately over dry and damp red litmu	(1 ¹ / ₂ marks)
b)	Dry c	chlorine gas was passed separately over dry and damp red litmu what is observed with;	(1 ¹ / ₂ marks)
b)	Dry c	chlorine gas was passed separately over dry and damp red litmu	(1 ¹ / ₂ marks)
b)	Dry c	chlorine gas was passed separately over dry and damp red litmu what is observed with;	(1 ¹ / ₂ marks)
b)	Dry o State i)	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper	(1 ¹ / ₂ marks) is paper. (¹ / ₂ mark)
b)	Dry c	chlorine gas was passed separately over dry and damp red litmu what is observed with;	(1 ¹ / ₂ marks)
b)	Dry o State i)	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper	(1 ¹ / ₂ marks) is paper. (¹ / ₂ mark)
	Dry o State i)	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper Damp red litmus paper	(1 ¹ / ₂ marks) s paper. (¹ / ₂ mark) (¹ / ₂ mark)
b)	Dry o State i)	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper	(1 ¹ / ₂ marks) is paper. (¹ / ₂ mark)
	Dry o State i)	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper Damp red litmus paper	(1 ¹ / ₂ marks) s paper. (¹ / ₂ mark) (¹ / ₂ mark)
	Dry o State i)	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper Damp red litmus paper	(1 ¹ / ₂ marks) s paper. (¹ / ₂ mark) (¹ / ₂ mark)
c) Wh	Dry of State i) ii) Write en Lead	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper Damp red litmus paper equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metal	(1 1/2 marks) s paper. (1/2 mark) (1/2 mark) (1/2 mark)
c) Wh B h	Dry o State i) ii) Write en Lead owever b	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper Damp red litmus paper equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metal ourns in air forming an acidic gas Y.	(1 1/2 marks) s paper. (1/2 mark) (1/2 mark) (2 marks)
c) Wh	Dry of State i) ii) Write en Lead	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper Damp red litmus paper equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metal	(1 1/2 marks) s paper. (1/2 mark) (1/2 mark) (2 marks)
c) Wh B h	Dry o State i) ii) Write en Lead owever b	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper Damp red litmus paper equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metal ourns in air forming an acidic gas Y.	(11/2 marks) s paper. (1/2 mark) (1/2 mark) (1/2 mark) was formed. Gas
c) Wh B h	Dry o State i) ii) Write en Lead owever b	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper Damp red litmus paper equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metal ourns in air forming an acidic gas Y.	(1 ¹ / ₂ marks) is paper. (¹ / ₂ mark) (½ mark) (2 marks) was formed. Gas
c) Wh B h	Dry o State i) ii) Write en Lead owever b	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper Damp red litmus paper equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metalourns in air forming an acidic gas Y. Identify gases; A	(1 ¹ / ₂ marks) is paper. (¹ / ₂ mark) (2 marks) was formed. Gas (¹ / ₂ mark) (¹ / ₂ mark)
c) Wh B h	Dry o State i) ii) Write en Lead owever b	chlorine gas was passed separately over dry and damp red litmu what is observed with; Dry red litmus paper Damp red litmus paper equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metalourns in air forming an acidic gas Y. Identify gases; A B	(1½ marks) s paper. (½ mark) (½ mark) (2 marks) was formed. Gas (½ mark) (½ mark) (½ mark)

ъ)	Write		marks)
	i)	gas A reacts with lead (II) oxide.	:
		gas B reacts with air to form Y.	marks)
	ii)	gas B reacts with an to	<u>. </u>
			l mark)
9. a) Defi	fine the term saturated hydro carbon.	
		α	mark)
:) Giv	ve the structural difference between ethene and ethane (1)	
			<u></u>
	i)	Name one reagent that can be used to distinguish ethene from ethane in laboratory.	mark)
			190
(), 20 (), 20 (), 20	ii)	State what is observed when the reagent named in b(i) above is separated treated with ethene and ethane.	ly 1 mark)
*			11.
	iii)	Write the equation for the reaction between ethene and the reagent name b(i) above.	/ ₂ mark)
	39 19		
10.	a) De	efine Enthalpy of combustion.	(1 mark)
			
	te	When 3.2g of Methanol was burnt completely, the heat produced raised the When 3.2g of Methanol was burnt completely, the heat produced raised the emperature of 50g of water from 24.5°C to 37°C. Calculate the heat of combot Methanol C=12, H=1, O=16, specific heat capacity of water is 4.2J/g/°C; 1 mole of 10.	ustion of
	(C w	C=12, H=1, O=10, specific float support weighs 32g)	marks)
	<u> </u>		• • •
<u> </u>			
	c) Sta	tate one use of methanol other than being a fuel ((1 mark)
		2010	6

SECTION B

Answer any two questions in this section.

11.	a).	What is meant by reaction rate?	(1 marl
	b) .	Describe an experiment to show the effect of concentration of reactar of the reaction.	nts on the rate (7 mark
	c)	 2.4g of Magnesium powder was added to 25cm³ of dilute sulphuric a i) Sketch a graph to show how the rate of the reaction would var temperature. 	
		ii) On the same graph, sketch another graph to show what would leave the temperature was increased to 30°C but keeping the Magnesium powder.	ne mass of (1 mark
		iii) Explain the shape of your graphs in c(ii) above.	(1 mark)
		iv) Calculate the molarity of the acid (Mg = 24, H=1, S = 32, O =	
12.	a)	i) State one reason why air is considered a mixture and not a comp	(1 mark)
ž		ii) Name one method by which the components of air can be separa	
	b) .	Oxygen gas can be prepared in the laboratory by addition of water to sui) Identify Q.	ibstance Q (1 mark)
	· ·	ii) Write the equation for the reaction between water and Q.	(1 ¹ / ₂ mark)
	9	iii) Draw a well labelled diagram of the setup of apparatus that can be prepare oxygen from substance Q.	e used to (2 ¹ / ₂ mark)
	· ċ).	A piece of burning sulphur was lowered into a gas jar of oxygen. i) State what was observed. ii) Write equation for the reaction that took place.	(1 mark) (1½ marks)
	d)	Water was added to the gaseous product in (c) and to the resultant solution flower was immersed. i) State what was observed. ii) Write equation for the reaction between water and the gaseous product iii) Explain your observation in d(i) above.	(1 mark)
	2)	State how the gaseous product in(c) can be identified in the laboratory.	(1 mark)
13.	e) a)	Describe with the aid of a diagram how a dry sample of hydrogen sulphid prepared in the laboratory.	
	b)	(i) State how hydrogen sulphide can be identified in the laboratory.	(1 mark) (1 ¹ / ₂ marks)
		(ii) Write equations to support your unover in one	Turn Over

	dioxid	e.
. c)	A gas jar of hydrogen sulphide was inverted over one with sulphu dioxide	(1/2 mark)
d)	 (i) Name the solid product formed. (ii) Write equations for the reaction that took place. With the aid of equations, show how sulphur can be converted to sulphur. 	(1 ¹ / ₂ marks)
14. a)	State one difference between fats and oils.	
b)	Soap is prepared from vegetable oil and sodium hydroxide solution. i) Name the process of manufacture of soap. ii) State the conditions for the reaction.	(1 mark) (1 mark) (1 mark)
	iii) Name one substance that must be added to precipitate out soap.	(1 mark)
c)	Describe how soap can clean dirt on a piece of cloth.	(5 mark)
d) e)	Soap is one of the substances that can pollute water. Describe the proces polluted water treatment. Give two importance of the bi-products of sewage treatment.	s of (4 marks) (2 marks)
	END	
	ā) s	

Name	Signature
School	Index No

545/2 CHEMISTRY Paper 2 July/August 2017 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES;

Section A consists of 10 structured questions. Answer all questions in this section.

Answers to these questions must be written in the spaces provided.

Section B consists of 4 semi – structured questions. Answer any two questions from this section.

Answers to section B must be written in the answer booklet/sheets provided and stapled at the back of the question paper.

Show all your working clearly in both sections.

Where necessary use;

[Fe = 56, C = 12, O = 16, H = 1, Molar gas volume at s.t.p = $22.4dm^3$]

1 2 3 4 5 6 7 8 9 10 11 12 13 14	Total
	1
	8

© WAKISSHA Joint Mock Examinations 2017

SECTION A (50 MARKS)

Answer all questions in this section.

1.	(a)	Ammonium chloride and Lead (II) nitrate behave differently on heating. Which one undergoes;									
				rary change.		(½ marks)					
		(ii)	Permar	nent change:		(½ marks)					
		377.54									
	(b)	Write an equation to show how Lead (II) nitrate decomposes when heated									
			strongly;								
						167 198 CO 96 1 400					
	(c)	Ammonia chloride was dissolved in water and to the resultant solution dilute nitric acid and silver nitrate were added.									
		(i) State what was observed									
						(1mark)					
		(ii)				ook place (1½ marks)					
2.	(a)	Distin		etween mass numbe		er. (01 mark)					
·			-								
.,,											
	(b)	Complete the table below showing atoms of elements V, W, X and Y. (The									
	(0)	101000 BERRY -		the usual symbols	TO 31 ST						
		Elen	ents	No. of neutrons	Mass number	Electronic configuration					
		37 V			*	a a					
		13 W									
		- <u></u> x	991	12		2:8:1					
		;Y			19						
		- Anna Maria	V 1	1 2		(04 marks)					
3.	(a)	What	is an O	xide?		(01 mark)					
				•••••							
					12						

(b)		and Carbon dioxide. State the oxide(s) that can react with:	ixide, Sodium
٠	(i)	acids only;	(01 mark)
	(ii)	alkali only;	(01 mark)
	(iii)	both acid and alkali	(01 mark)
	(iv)	neither acid nor alkalis	(01 mark)
(a)		ine the term electropositivity	
Tw	o rods A	A and B of different metals were placed in a solution containing he observations made were given below; A Solution containing ions of metal C	
		No visible reaction Solid deposited	
(b)	the	range the metals A, B and C in order of their electro positivity (least electro positive)	$(01^{1}/_{2} \text{ marks})$
	#IS-F01		
(c)	Αı	ring made of iron can be protected by coating it with silver. Drithe setup of apparatus that can be used to coat an Iron ring with	aw a diagram
		· ·	

),	F			A, contains 59%, sodium and the rest is Oxygen.	
	(a)	Calcula	ate the molecular formular of the compound given that the re	lative
				a mass of the compound is 78 (Na = 23 , O = 16)	(3½ marks
				······································	

		(b)	Write	an equation for the reaction between the compound A and wa	ter:
		3 14 6			(1½ marks)
6.		Vege		l can be converted to a solid fat by the following equation.	
				$\frac{Y}{H_{2(g)}} \rightarrow \text{ solid fat.}$	
		vege	tation	H _{2(g)} solid lat.	
		(a)	(i)	Name the process being illustrated	(01 mark)
			(ii)	Identify Y and state its role in the process	(02 marks)
		(b)	State	one industrial application of the process in a(i) above	(01 marks)
				7 3	
		(c)	Vege	table oil was boiled with aqueous sodium hydroxide and a salt	was formed.
			Name	e the compound formed.	(01 mark)

7.		(a)	A Da	niel cell is an example of a chemical cell. Identify the	
			(i)	cathode	(01 mark)
			(ii)	electrolyte at anode in the Daniel cell.	
			(11)	electrosyte at anode in the Damer Cen.	
					(01 mark)
		4.5	*** **		A500
		(b)		equation for the reaction at each electrode	(02 marks)
			Catho	ode;	
					••••••

		Ano	le;	
	(c)	State	one disadvantage of the cell.	(01 mark)
		. ,,		
8.	(a)		e the method that can be used to prepare Lead (II) Sulphate	
•	(-)		ratory.	(01 marks)
	(b)	Writ	e the equation leading to the formation of Lead (II) Sulphate	in the
	. ,	labo	ratory.	(1½ marks)
	(c)	State	what is observed when ammonia solution is added drop wis	e until in
		(i)	Zinc ions.	(1½ marks)
		7-2		
ê				
		(ii)	Lead (II) ions.	(01 marks)
9.	(a)	Conc	centrated sulphuric acid is not a suitable drying agent for amn	nonia. (2½ marks)
		(i)	Give a reason for the observation above.	•
* 1	<u> </u>			
		387		
		(ii)	Write the equation to support your answer in a(i) above.	0.40
			mmonia gas was passed over heated Lead (II) Oxide in a con	
	(b)	Dry a	State what was observed.	(01 mark)
		(1)		
		(ii)	the state of the s	(1 ¹ / ₂ marks)
		(11)		8 28 2
10	11	Can allos	of Copper and Zinc when reacted with excess hydrochloric	
10.	4g oi	m ³ of hy	drogen gas measured at s.t.p.	0
	(a)		the alloy.	(01 mark)
			© WAKISSHA Joint Mack Franciscotions 2017	Turn Over

	(b)	Write the equation for the reaction that took place.	(1½ marks)
	(c)	Calculate the mass of copper in the alloy.	(1½ marks)

		***************************************	***********
	7.2000		
	(q)		(01 marks)
		SECTION B (30 MARKS)	300
		Answer two questions in this section.	
11.	(a)	With the aid of a labeled diagram describe the structure of a diamond	l crystal.
			(04 marks)
	(b)	Diamond was burnt in excess air to produce gas Y. (i) Identify gas Y.	701
		(ii) Write the equation for the reaction that took place.	(01 mark) (1½ marks)
	. (c)	Gas Y was passed through sodium hydroxide solution for a long time	
	(3)	(i) State what was observed. Explain the observation	(2½ marks)
	(d)	Describe how sodium carbonate powder can be prepared on large sca	ale. (6½ inarks)
			The second secon
12.	(a)	Describe how a sample of nitrogen can be obtained from air. (diagram not required)	(05 marks)
	(L)		
	(b)	(i) Write the equation for the reaction between nitrogen and hyd.	rogen. (1½ marks)
		(ii) State the conditions for the reaction above.	(01 mark)
	(c)	Starting with ammonia, describe how nitric acid can be prepared on	industrial
		scale.	(5½ marks)
	(d)	Write the equation for the reaction between copper and;	•
		(i) Dilute nitric acid.	(1½ marks)
		(ii) Concentrated nitric acid	(1½ marks)
3.	(a)	(i) Describe the process of preparation of ethanol from starch.	(4½ marks)
- 60.7)	CASIA TO	(ii) Write the equation for the process in a(i) above.	$(1\frac{1}{2} \text{ marks})$

- Ethanol can be dehydrated using sulphuric acid to form compound P. (b) Name the class of the organic compound to which P belongs. (01 mark) (i) Write the general formula of the class of the compound to which P (ii) (01 mark) belongs. Name the reagent that can be used to identify P in the laboratory. (i) (c) (01 mark) State what is observed when P is treated with the reagent named in c (i) (ii) (01 mark) Polyethene is prepared by addition polymerization. (d) (01 mark) State what is meant by the term addition polymerization. (i) (01 mark) Name the monomer units in polyethene. (ii) Write the equation for the reaction leading to formation of polyethene. (iii) (01 mark) (01 mark) Give one disadvantage of polyethene. (i) (e) Suggest one way of overcoming the disadvantage mentioned (ii) (01 mark) in e(i) above. Define the following terms; 14. (a) (01 mark) Enthalpy of solution. (i) (01 mark) Enthalpy of neutralization. (ii) The table below shows heat changes obtained when seven portions of 50cm3 of (b) 2M sodium hydroxide solution were each placed in insulated plastic beakers and the temperature noted. Various quantities of hydrochloric acid all at the same temperature were added in each beaker and the temperature rise noted. 50 50 50 50 Volume of NaOH (cm3) 50 50 140 120 100 80 Volume of HCl (cm3) 60 40 20 5.6 5.6 5.6 4.5 3.4 2.2 Heat evolved (KJ) 1.1 Plot a graph of heat change against the volume of hydrochloric acid. (i) (41/2 marks) From the graph determine the volume of hydrochloric acid required to (ii) completely neutralize 50cm3 of 2M sodium hydroxide. (01 mark) Calculate (c)
 - (i) The number of moles of sodium hydroxide contained in 50cm³ of the solution. (2½ marks)
 - (ii) The concentration in moles per litre of the hydrochloric acid. (2½ marks)
 - (d) Determine the molar heat of neutralization for the reaction. (02 marks)

Name	Signature
School	Index No
545/2 CHEMISTRY	
Paper 2	
July /August2015 2 hours	

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES

- Section A consists of 10 structured questions. Answer all questions in this section.

 Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this section.

Answers to section B must be written in the answer booklet/sheets provided and stapled at the back of the question paper.

Show all your working clearly in both sections.
 Where necessary use;
 [Ba = 137, C = 12, O = 16, H = 1, S = 32, Na= 23, Molar gas volume at s.t.p = 22.4dm³]

1	2	3	4	_5	6	7	8	9	10	11	12	13	14	Total
		•												

SECTION A (50 MARKS)

Answer all questions in this section.

١,	Dilute	e sulpl	hurie acid was added to magnesium ribbon, a gas W was evolved	1
	(a)	<i>(i)</i>	Identify W	(¹/2 mark)
		(ii)		(1½ mark)
	(b)	Wh	en dry W was burnt in air and the vapour condensed, a colourless	TOTAL DE MUNICIPAL DE
	(0)		s formed.	nqua Q
		(i)	Name one compound that can be used to identify Q.	(1mark)
		(ii)	State what is observed when the named compound in b(i) is treat	
		(u)	with liquid Q	(1 mark)
		(iii)	Write equation for the reaction between Q and the compound n	
	x.			(1mark)
				*
2.	(a)	De	efine the term solubility of a salt.	(1mark)
	2.5	***		
		,.,		
	(b)	Tl	he solubility of salt X is $65g/100g$ of water at 80^{0} C and $42g/100g$	of water at
			0°C. Calculate the mass, of X that will crystallise by cooling 16g	of saturated
		so	olution X from 80°C to 30°C.	$(2^{1}/_{2} \text{ marks})$

		***		**************

	(c)	Wat chlo	ter from lake Katwe consists of a mixture of sodium carbonate oride.	and sodium
		(i)	State the method that can be used to separate the two salts.	(1 mark)
		(ii)	Hydrochloric acid was added to the mixture in (c) above. Write ionic equation for the reaction that took place.	(1 ¹ / ₂ marks)
3.	(a)		bon dioxide can be prepared by reacting dilute hydrochloric aci	d with marble
		(i)	Write ionic equation for reaction leading to the formation of c	arbon
		32	dioxide.	(1 ¹ / ₂ marks)
	(b)	Bur (i)	rning magnesium was lowered into a gas jar of carbon dioxide. State what was observed.	(I mada)
ii.		(ii)	Give a reason for your above	(1 mark)
		(iii)	Write equation for the reaction that took place.	(1 ¹ / ₂ marks)
				•••••
4.	(a)		n a dry mixture of hydrogen and nitrogen was passed over finely was formed.	divided Iron,
P		(.)	State two other conditions other than that mentioned in(a) that ar	e necessary
		-	for the formation of gas R.	(01 marks)
		<i>(</i> (1)	······································	
		(ii)	write equation for the reaction that took place in (a).	$(1^{1}/_{2} \text{ mark})$
		<u> </u>		
			in a CD	
	(b)	A gas	jar of R was inverted over a gas jar of hydrogen chloride.	
			State what was observed.	(01 mark)
		•		

		(ii) \	Write equation for the reaction that took place.	(1 ¹ / ₂ marks)
		All Control		

5.	(a)		ydro carbon W of molecular mass 58 contains 82.8% carbor rogen. Calculate;	
		(i)	Emperical formular of W.	(02 marks)
			3.	
		(ii)	Molecular formular of W.	(01 mark)
		()		
		39		••••••
	(b)	medil	drocarbon Y has C ₄ H ₈ as its molecular formular.	(0)
		(i)	Write down the structure of Y.	(01 mark)
		(ii)	State the structural difference between Y and W.	(01 mark)
				(4)
	1955			
6.	S4			.w.
			Test tube X	м ж
		99		odium hydroxide
		_(Lead Carbonate	
			a hearth when the contest of the table W	
	(a) ((i) S	State what was observed when the content of test tube Y was annual no further change and then left to cool.	(01 mark)
		300		***************************************
	,	, .,		
		36.	54 	***************************************
		100	(8)	

	3	(ii)	Write equation for the reaction that took place in test tube Y.	(11/2 marks)
	(b)	(i)	State what was observed when the gaseous product from test to bubbled through sodium hydroxide for a long time.	
	91			
		(ii)	Write equation(s) for the reaction that took place.	(1 ¹ / ₂ marks)
7.	(a)	De:	fine the term Electrolyte.	(1 mark)
	(b)	 Na: (i)	me one substances that uses the following for conducting electric Free electrons	
		(ii)	Ions	
•	(c)	Fig	ure 1. Shows an electrolyte cell, study it and answer the question	s below;
		Co	pper rod Copper(II) Sulphate solution	
		Star (i)	te what was observed at Zinc Rod	(1 mark)
			© WAKISSHA Joint Mock Examinations 2015	Turn Ove

	. (ii) Copper Rod	(1 mark
		(iii) Briefly explain your observation in; a (i) and (ii)	(1 mark)
8.	7.5g CH ₄ (of methane was completely burnt in air according to the following $(g) + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(f)}$	g equation.
		40	$\Delta H = 890 \text{kjmol}$
	(a)	Calculate the volume of earbon dioxide formed at s.t.p	(2 marks)
	(b)	The heat evolved	(2 marks)
9.	(a)	Barium sulphate can be prepared by reacting sodium sulphate and	
		(i) State the method of preparation being used.	(1 mark)
			the production of the producti
		(ii) Write ionic equation for the reaction that takes place when t	he two
		compounds are reacted.	. (¹ / ₂ mark)
	(b)	Excess Barium chloride was added to a solution containing 3.55g sulphate and the mixture filtered. Calculate the mass of the precipitate formed. Na = 23 , S = 32 , O =	0.00
		· · · · · · · · · · · · · · · · · · ·	
10	11.		
10.	(a)	oure alcohol can be prepared from a solution of glucose C ₆ H ₁₂ O ₆ m (i) Name the process by which glucose in the presence of yeast to alcohol.	ixed with yeast.
		×	(1 mark)
	8	***************************************	

		(11)	State the role of yeast.	(1 mark)
		(iii)	Write equation for the reaction leading to the formation of the alco	(1 mark)
(b)	State	*	(1 mark)
		. ,	***************************************	
	100			
	20			1000 00000
		(ii)	One method that can be used to test for the purity of the alcohol.	(1 mark)
100 m			SECTION B 30 MARKS	
11.	(a)		ing a diagram, describe the laboratory preparation of dry chlorine by dation of potassium manganite (VII)	(5 marks)
	(b)	(i) (ii)	mus solution was poured into a gas jar of chlorine gas State what was observed. With the aid of suitable equation, explain your observation in b(i)	(1 mark) above. (4marks)
	(c)	Chl	lorine gas was bubbled through water and the resultant solution exp	osed to
		brig	ght sunlight in an inverted tube.	
		(i)	State what was observed	(1 mark)
		(ii)	Write equation for the reaction that took place when the solution v to sunlight.	vas exposed (1 ¹ / ₂ marks)
	(d)	Αg	gas jar of hydrogen sulphide was inverted over a gas jar of chlorine.	
		(i)	State what was observed	(1mark)
		(ii)	Write equation for the reaction that took place.	(1 ¹ / ₂ marks)
2.	(a)	(i)	Describe how pure sample of sodium carbonate can be obtained in laboratory starting with dilute hydrochloric acid.	n the
			(your answer should include equations for the reaction)	(5 marks)

- (b) A concentrated solution of sodium carbonate was added to water containing calcium ions.
 - (i) State what was observed.
 - (ii) Write equation for the reaction that took place.

(31/2 marks)

- (c) 15.0g of a mixture of sodium carbonate and sodium sulphate was added to distilled water in a volumetric flask and the solution made up to 1000cm³ with distilled water. 25cm³ of this solution required 12.5cm³ of 0.2M sulphuric acid for complete reaction.
 - (i) Write equation for the reaction that took place.

 $(1^{1}/_{2} \text{ marks})$

(ii) Calculate the mass of sodium carbonate in the mixture.

(31/2 marks)

(iii) Find the percentage of sodium carbonate in the mixture.

(1¹/₂ marks)

13. (a) What is meant by the term rate of reaction

(1 mark)

- (b) Briefly describe an experiment that can be carried out to determine the effect of concentration on the rate of reaction between sodium thiosulphate and dilute hydrochloric acid. (5marks)
- (c) In order to determine the rate of reaction between magnesium and 0.1M hydrochloric acid. The acid was added to magnesium powder.
 - (i) Sketch a graph of volume of gas produced against time for the above reaction and label it X. (2 marks)
 - (ii) Using the same axes sketch a graph of volume against time if magnesium ribbon is used instead of magnesium power and label it Y. (1 marks)
 - (iii) Explain the difference between the two curves X and Y. (2 marks)
- (d) Magnesium ribbon was put in a test tube containing 120cm³ of 5.2m nitric acid until the evolution of the gas stopped. Calculate the mass of magnesium that reacted with the acid. (4 marks)
- 14. Explain each of the following observations;
 - (a) A solution of Barium chloride reacts with sodium sulphate solution to give a white precipitate insoluble in dilute hydrochloric acid, where as a solution of Barium chloride reacts with sodium sulphite solution to give a white precipitate that dissolves in dilute hydrochloric.

 (4¹/₂marks)
 - (b) At low temperature (10°C) nitrogen does not react with magnesium. However it reacts with Burning magnesium to form a white solid which dissolves in water evolving a colourless alkaline gas. (5marks)
 - (c) When sodium hydroxide solution is added to a solution containing zinc sulphate a white precipitate soluble forming a colourles solution is formed. (3½ marks)
 - (d) Dilute sulphuric acid conducts electricity but concentrated sulphuric acid does not.

 (2 marks)

END

Name	Signature
School	Index No
545/2 CHEMISTRY Paper 2 July /August2014	
July /August2014	

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES

2 hours

- Section A consists of 10 structured questions. Answer all questions in this section. Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this section.

Answers to section B must be written in the answer booklet/sheets provided and stapled at the back of the question paper.

Show all your working clearly in both sections. Where necessary use;

Where necessary tase,
$$[1F = 96500C, C = 12, H = 1, O = 16, N = 14, Ca = 40, S = 32, K = 39]$$
 Molar gas volume at s.t.p = 22.4dm³]

					F	or ex	amine	er's u	se onl	y				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

SECTION A (50 MARKS)
Answer all questions in this section.

1.	Lau the (a)	arge scale preparation of nitrogen is done by passing air through solution A and nen over heated metal Z. a) Identify						
		(i) solution A	(½ mark)					
		(ii) metal Z	(½ mark)					
	(b)	State the role of solution A and metal Z in the above process.						
		(i) Solution A	(½ mark)					
		(ii) Metal Z	(½ mark)					
	(c)	Write equation of the reaction that took place when air was passed						
12		(i) through solution A	. (½ mark)					
		(ii) Over heated metal Z	(½ mark,					
2.	a)	Steam was passed over heated iron fillings in a combustion tube.	# 8					
		i) State what was observed.	(1 mark)					
		ii) Write equation for the reaction that took place	(1½ marks)					
	la .							
	b)	The gaseous product in a (i) was dried and burnt in excess air to form su i) Name one compound that can be used to identify Q.	bstance Q. (½ mark					
		ii) State what is observed when Q is treated with the compound named i	in b (i) (1 mark					
			••••••					
		iii) Write equation for the reaction that took place in b(ii)	(1 mark					
2	a)	Define the term relative atomic mass.	(1 mark					
J.	aj							
			4					
		© WAKISSHA Joint Mock Examinations 2014	3.4					
	200	- WINDONA JOINI WOCK EXUMINATIONS 2011	100					

1	b)	An element W has mass number 27 and 14 neutrons. i) Write down the electronic configuration of W.	(1 mark)
		 ii) W combines with oxygen to form compound R, write down the for state the type of bond in R. Formula 	mula of R and (½ mark)
		Type of bond	(½ mark)
	c)	R was dissolved in dilute hydrochloric acid and to the resultant solution ammonium hydroxide drop wise until in excess. i) State what was observed.	was added (1 mark)
0		ii) Write ionic equation to explain the observation made in c (i) above.	(1½ mark)
4.	a)	Water was dropped onto Calcium oxide placed on a petri dish. i) State what was observed	(1 mark)
		ii) Write equation for the reaction that took place	(1½ mark)
	b)	To the resultant solid was added ammonium chloride and the mixture hea i) Write equation for the reaction that took place.	ted. (1½ mark)
Ü	*	ii) State how the gascous product in b(i) above can be identified.	(1 mark)
5.	1.5g a)	of a hydro carbon M consists of 1.2g of carbon. Calculate the empirical formula of M.	(2 marks)

	b)	pre	25g of hydro carbon M occupies a volume of 100cm ³ at room tempessure (1 mole occupies 24000cm ³ at rtp).	perature and
		i)	Calculate the relative molecular mass of M.	(1½ mark)
				.,
		Si	•••••••••••••••••••••••••••••••••••••••	
		ii)	Determine the molecular formula of M	(1½ mark)

6.	Car	bon	monoxide can be prepared by dehydration of substance W using co	
			Name substance W	(½ mark)
		11)	Write equation for the reaction leading to the formation of carbon r	nonoxide (1½ mark)
4	Y			
	b)		arbon monoxide was passed over heated iron (iii) oxide Write equation for the reaction that took place.	(1½ mark)
	92	ii)	State how the gaseous product in b (i) above can be identified.	(1½ mark)
	24			
7.	a)	De	fine the term heat of combustion.	(1 mark)
		•••		
		•••		
			·	
	b)	Eth	nanol burns in oxygen according to the following equation. $_{3}CH_{2}OH_{(l)} + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_{2}O_{(l)}$	24
		CI		-154KJmol ⁻¹
			ulate	(11/ 1-)
	- i)	[-]	eat evolved when 11.5g of ethanol reacted with oxygen at s.t.p	(1½ marks)
		••		
		• •		
		• •		

1	ii) The volume of carbon dioxide produced at stp ($C = 12$, $H = 1$, $O = 16$)
1		(2)
	***************************************	************
	·····	
8.	Electrolysis of 1M sulphuric acid was carried out using Zinc cathode and cop	pper anode.
	a) State what was observed at the anode.	(½ mark)

	b) Write equation for the reaction that took place at the	
	i) Cathode	******
		(1½ marks)
	ii) Anode	W. Deline Medical Control of the Con
\mathbb{C}		
		(11/4 marks)
	c) Write an equation for the overall cell reaction.	(1½ marks)
9.	Hydrogen is produced in the laboratory according to the following equation.	
	$2HCl_{(aq)} + Zn_{(s)} \longrightarrow ZnCl_{2(aq)} + H_{2(g)}$	
	a) i). State two ways in which the rate of production of hydrogen can be incr	eased. (2 marks)
0	ii) Sketch a graph to show how the rate of production of hydrogen varies	vith time. (1½ marks)
		(172 marks)

	b)	Calculate the volume of hydrogen produced at s.t.p when 25cm of 21	M hydrochloric
	1	acid was completely reacted with Zinc granules.	(2 marks
		(Imole of gas at s.t.p occupies 22400cm ³)	(2 marks
10	. a)	i) Name one reagent that can be used to identify iodide ions in the lab	ooratory. (½ mark
		ii) State what is observed when the solution containing iodide ions is reagent names in a(i) above.	reated with the (½ mark)
	b)	Write equation for the reaction that took place in a (ii)	(1½ marks)
	c)		
	(۲	i) State what was observed	(½ mark)
		1) Blace what was conserved	38000000
		ii) Write equation for the reaction that took place.	(1½ marks)
		*	
	.,	SECTION B (30 MARKS)	
		Any two questions in this section.	
11	en	ucose $C_6H_{12}O_6$ can be converted into ethanol by a catalytic reaction cause zymes produced by yeast. Name	ed by the
	,	i) the reaction in which yeast converts glucose into ethanol.	(1mark)
		ii) the enzyme produced by yeast during the above reaction.	(1mark)
		iii) write equation for the reaction leading to the formation of ethanol	
		by the process named in a(i).	(1½ marks)
	b)	When Ethanol was strongly heated together with concentrated sulphuric	acid, gas W
	n	was formed.	
		i) Identify gas W	(1mark)
		ii) Write equation for the reaction leading to the formation of gas W.	(3 marks)
		© WAKISSHA Joint Mock Examinations 2014	6

Name one reagent that can be used to identify W in the laboratory. c) i) (6 marks) ii) State what is observed when the reagent is treated with Gas W. (1mark) iii) Write equation for the reaction that took place in c(ii) (1½ marks) d) W when treated with high pressure and heat, in the presence of a catalyst reacts to form a plastic P with a high molecular mass. (1 mark) Identify P i) (1½ marks) ii) Write equation leading to the formation of P from W. (1 mark) iii) State one domestic use of P. (2 marks) e) Differentiate between thermosetting and thermosoftening plastics. 12. a) Describe how a pure dry sample of Sulphur dioxide can be prepared in the laboratory (4 marks) (Diagram not required) b) Describe how Sulphur dioxide can be used to obtain pure sulphuric acid. (Your answers should include equations for the reactions). (7 marks) c) Concentrated sulphuric acid was added to a beaker containing crystals of sucrose (1 mark) state what was observed (11/2 marks) ii) write equation for the reaction that took place (11/2 marks) d) State how sulphate ions can be tested for in the laboratory 13. Explain the following observations. a) Diamond and graphite are both allotropes of carbon. However, diamond is very hard while graphite is soft. b) Potassium chloride conducts electricity in both fused state and in aqueous solution whereas hydrogen chloride conducts electricity only in aqueous solution and not in gaseous state. c) Aluminum chloride solution is acidic but when evaporated to dryness and the residue dissolved in water, the resultant solution is alkalinic. d) Addition of sodium hydroxide solution to a solution of Zinc nitrate gives a white precipitate which is soluble in excess forming a colourless solution. 14. Sodium is extracted industrially by the down's process. a) Briefly describe the process leading to the extraction of sodium. (5 marks) (diagram not required)

- b) Sodium metal was dropped into a trough of water
 - i) state what was observed

(11/2 marks)

ii) write equation for the reaction that took place

(1½ marks)

- c) The resultant solution in (b) was Separately treated with solutions of aluminium and lead ions.
 - i) state what was observed.

(1mark)

ii) write ionic equation(s) to explain your observations in C(i)

(3marks)

d) i) Name one reagent that can be used to differentiate between lead and aluminium ions.

(1mark)

ii) State what is observed when the named reagent is separately treated with the solutions of lead and aluminium ions. (2 marks)

END

Name	Signature
	**
School	Index No

545/2 CHEMISTRY Paper 2 July /August2013 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES

- Section A consists of 10 structured questions. Answer all questions in this section.
 Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this section.

Answers to section B must be written in the answer booklet/sheets and stapled at the back of the question paper.

• Show all your working clearly in both sections.

Where necessary use;

[1F = 96500C, C = 12, H = 1, O = 16, N = 14, Ca = 40, S = 32, K = 39

Molar gas volume at s.t.p = 22.4dm³]

						For ex	amine	er's us	e only					
1	_2_	_3_	4_	5	6	7	8	9	10	11	12	13	14	Total '
į														

SECTION A (50 MARKS)

Answer all questions in this section

1.	(a)	Stat	e one difference between compounds and mixtures.	(1mari
			de	
	(b)	Stat i)	e whether the following substances are elements, compounds Diamond	(01 mark)
	想	ii)	Common salt	(01 mark)
		iii)	Duralumin	(01 mark)
	85			
	(c)	Coj	pper and Zinc were mixed to form a solid W	
	*	i)	Name the solid W formed	$\binom{1}{2}$ mark)
		ii)	State one use of solid W	(¹/2 mark)
2	An	elem	ent X has an atom whose symbol is 24	
۷.	(a)		Draw the electronic structure of X	(01mark)
			×	
				W4.27W.26000000000000000000000000000000000000
		ii)		(01mark)
	<i>a</i> ×	Tri	e oxide of X was dissolved in water and the aqueous solution to	
	(b)	litn	nus solution.	lested with
		i)	State what was observed	$\binom{l}{2}$ mark)
		ii)	Write equation for the reaction between the oxide of X and v	vater.
				$(1^{1}/_{2} mark)$
	85			
			DEC 2	

i) Write equation for the reaction that took place. (I¹/₂ mark) 3. (a) Oxygen gas can be prepared in the laboratory by dissolving a solid compound Y in water. i) Name compound Y. (01 mark) ii) Write equation leading to the formation of oxygen from compound Y. (1¹/₂ mark) (b) The resultant solution in (a) was added to Iron (II) Sulphate solution. i) State what was observed. (01 mark) ii) Write ionic equation for the reaction that took place. (1¹/₂ mark) 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (¹/₂ mark)		(0)	bla	ten a piece of X was ignited and lowered into a gas jar of carb ck particles were observed.	on dioxide,						
3. (a) Oxygen gas can be prepared in the laboratory by dissolving a solid compound Y in water. i) Name compound Y. (01 mark) ii) Write equation leading to the formation of oxygen from compound Y. (1 ¹ / ₂ mark) (b) The resultant solution in (a) was added to Iron (II) Sulphate solution. i) State what was observed. (01 mark) ii) Write ionic equation for the reaction that took place. (1 ¹ / ₂ mark) 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q.			- 10		$(1^l/_2 mark)$						
3. (a) Oxygen gas can be prepared in the laboratory by dissolving a solid compound Y in water. i) Name compound Y. (01 mark) ii) Write equation leading to the formation of oxygen from compound Y. (1 ¹ / ₂ mark) (b) The resultant solution in (a) was added to Iron (II) Sulphate solution. i) State what was observed. (01 mark) ii) Write ionic equation for the reaction that took place. (1 ¹ / ₂ mark) 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (¹ / ₂ mark)											
Y in water. i) Name compound Y. (01 mark) ii) Write equation leading to the formation of oxygen from compound Y. (1 ¹ / ₂ mark) (b) The resultant solution in (a) was added to Iron (II) Sulphate solution. i) State what was observed. (01 mark) ii) Write ionic equation for the reaction that took place. (1 ¹ / ₂ mark) 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (¹ / ₂ mark)	3.	(a)	Ox		850						
ii) Write equation leading to the formation of oxygen from compound Y. (1 ¹ / ₂ mark) (b) The resultant solution in (a) was added to Iron (II) Sulphate solution. i) State what was observed. (01 mark) ii) Write ionic equation for the reaction that took place. (1 ¹ / ₂ mark) 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q.			Y	Y in water.							
ii) Write equation leading to the formation of oxygen from compound Y. (I¹/2 mark) (b) The resultant solution in (a) was added to Iron (II) Sulphate solution. i) State what was observed. (01 mark) ii) Write ionic equation for the reaction that took place. (1¹/2 mark) 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q.			1)	annow you want to you work on the state of t							
(b) The resultant solution in (a) was added to Iron (II) Sulphate solution. i) State what was observed. (01 mark) ii) Write ionic equation for the reaction that took place. (1 ¹ / ₂ mark) 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (¹ / ₂ mark)			ii)	Write equation leading to the formation of oxygen from com	pound Y. $(1^{I}/_{2} mark)$						
ii) Write ionic equation for the reaction that took place. (1 ¹ / ₂ mark) 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)		(b)	Th								
ii) Write ionic equation for the reaction that took place. (1 ¹ / ₂ mark) 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (¹ / ₂ mark)			i)	State what was observed.	(01 mark)						
ii) Write ionic equation for the reaction that took place. (1 ¹ / ₂ mark) 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (¹ / ₂ mark)											
4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)			ii)		22						
 4. An organic compound P whose molecular mass is 46 contains 54.80% carbon, 32.90% oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16) (a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (a) Calculate i) The Empirical formula of P. (02 marks) (b) P can react with concentrated sulphuric acid to form gas Q. (a) Calculate i) The Empirical formula of P. (02 marks) (b) P can react with concentrated sulphuric acid to form gas Q. (b) P can react with concentrated sulphuric acid to form gas Q. 			11)								
ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)											
(a) Calculate i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)	4.	An	orga	mic compound P whose molecular mass is 46 contains 54.80%	carbon,						
i) The Empirical formula of P. (02 marks) ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)		32.9	00%	oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16)							
ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)		(a)	Ca	Iculate							
ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)			i)	The Empirical formula of P.	(02 marks)						
ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)											
ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)											
ii) Molecular formula of P. (01 mark) (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)											
(b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)											
(b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (1/2 mark)			ii)	0	(01 mark)						
 (b) P can react with concentrated sulphuric acid to form gas Q. i) State one other condition necessary for the formation of gas Q. (¹/₂ mark) 				•	••••••						
i) State one other condition necessary for the formation of gas Q. (1/2 mark)			_		******************						
(¹ / ₂ mark)											
			i)	State one other condition necessary for the formation of gas (54						
TOTAL STATE OF THE PARTY OF THE											

	ii)	Write equation leading to the formation of gas Q.	(01 mar)
	(c) i)	Name one reagent which can be used to identify ga	as Q in the laboratory. $\binom{l}{2} mark$
		· · · · · · · · · · · · · · · · · · ·	
		· ·········	
	ii)	State what would be observed when gas Q is treated	d with the reagent you
		have named in C(i).	(01 mark)
			£5
5.	When a	magnesium ribbon was ignited and burnt in air, two p	products Z and Y
	were for	rmed. Y dissolved in water with evolution of a colour	less alkaline gas W.
	(a) Iden	tify the substances	· · · · · · · · · · · · · · · · · · ·
	i)	Z	$(^{1}/_{2} mark)$
	ii)	Y	(1/2 mark)
•	iii)	Gas W	(¹ / ₂ mark)
	- 32074 - 0224-02074-7		
	(b) Write	e equation leading to the formation of gas W	$(1^{1}/_{2} mark)$
	•••••		
	(c) Gas V	W was passed over heated copper (II) oxide.	
	i)	Write equation for the reaction that took place.	$(1^1/_2 mark)$
			120
	(a) Sulph	uric acid is a strong dibasic acid.	
1	71.650 5.	State what is meant by the term dibasic acid.	(01 mark)
	,		

ii) Write equation to show how sulphuric acid ionizes in water.	$(1^1/2 mark)$
(b) Sulphuric acid reacts with ammonia according to the following equa	ation.
$H_2SO_{4(aq)} + 2NH_{3(g)} \longrightarrow (NH_4)_2SO_{4(S)}$	
If 20.0 cm ³ of a 2M solution of sulphuric acid were reacted with am	
calculate the mass of the solid formed.	$(2^{1}/_{2} mark)$
Carbon dioxide gas was passed over red hot charcoal as shown in figure excess carbon dioxide was passed through sodium hydroxide solution. Dry Carbon Tube Combustion Tube Carbon Tube Carbon Tube Tube Tube Tube Tube Tube Tube Tube	
Charcoal wash bottle	Gas X
Fig. 1 Sodium hydroxide solution	
(a) Write equation for the reaction.	
i) between charcoal and carbon dioxide gas.	$(1^1/_2 mark)$

that took place in the wash bottle.

 $(1^{1}/_{2} mark)$

ii)

	(b) Gas i)	Name gas X.	(1/2 mark)
	ii)	Write equation for the reaction that took place between Iron and gas X.	(III) oxide $(1^{1}/_{2} mark)$
8.		ample of hydrogen sulphide gas can be prepared in the laborato	ry using
	dilu	te hydrochloric acid and solid Q.	
	i)	Identify solid Q.	$\binom{1}{2}$ mark)
	8		
	ii)	Write equation for the reaction leading to the formation of hy	
	·==• / ··	sulphide from solid Q.	
			$(1^1/2 mark)$

	(I \)		······
		as jar of hydrogen sulphide was inverted over a gas jar of chlori	ne gas
	i)	State what was observed.	(01 mark)
. •	ii)	Write equation for the reaction that took place.	$(1^{l}/_{2} mark)$
9.	(a) State	what is meant by the term enthalpy of solution.	(01 mark)
	(b) 1.10	g of calcium chloride was dissolved in 50cm ³ of water and the perature of water increased from 20.9°c to 24.2°c	
	i)	Give a reason why there was a temperature rise in the water.	(01 mark)
	ii)	Calculate the molar heat of solution of calcium chloride (Ca =	
	11)	55	200 10000
		35.5 density of water \lg/cm^3 , heat capacity of water = 4.2 J/g	
		<i>9</i>	$(2^{1}/_{2} mark)$

			шинш	11111111111	nimm		11111111111	
				1111111111		mmmm	1111111111	111111111111111111111111111111111111111
						manna	11111111111	
). A	solut	ion containing calcium ions	i was m	ixed an	anda b	en witt	i a knov	wn volume
		solution and solid M was						
(a)		Name solid M that was fo						(¹ /) mark)
						11111111111	шиши	шиншинш
	ll)	Write ionic equation for the	ie react	ion len	ling to	the for	mation	
								(1 ¹ / ₂ mark)
							шини	
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(b) Nan	ne one;						
	1)	Physical process.						(01 mark)
	,					aanna		
	li)	Compound that can be use mixture.	ed to sto	op the f	'ormati	on of s	M bilo	in the (¹ /2 mark)
					y.			
			***********				,,,,,,,,,,	
, (c) Wri	te equation for the reaction	that wo	uld take	e place	when t	he mix	
	trea	ted with the compound nam	ed in b	(ii).				$(1^{1}/_{2} mark,$
							,,,,,,,,,,	
	,,,,,,						,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		SECTIO)N B: (30 MA	RKS)			
		tore avantlans from	this ear	etlon				
		wer any two questions from						
		litional questions answered						
(1.1a)		effy describe how a dry sam te laboratory.	ple of p	otassiu	m nitra	ite crys	tals car	n be prepare (06 marks
b)		table below shows the varia	ation of	'solubi	lity of	potassi	um nitr	ate with
		Solubility/100g of water	22	32	42	55	70	90
	Frank	Temperature "C	12	20	28	36	44	52
	Long	The state of the s	or and the second	A SUPPLIES	ni kapanganana	and management	Carl Company	

		i)	Plot a graph of solubility of potassium nitrate against temperatu	re.
	721	0065 20052		$(4^{l}/_{2}mark)$
	c)	Fro i)	m the graph determine; the solubility of potassium nitrate at 30°C.	(01 mark)
		ii)	the mass of potassium nitrate precipitated when the solution is	98
			cooled from 50°C to 30°C.	(01 mark)
	d)	Cal As	culate the concentration of potassium nitrate in moles per dm ³ at suming the density of water is 1g/cm ³ .	25° C (2^{l} / ₂ mark)
12.	a)	Wr	ite equation for the reaction between ammonia and;	
		i)	hydrogen chloride gas.	$(1^1/_2 mark)$
		ii)		$(1^{1}/_{2}mark)$
	b)	2621486	efly describe how nitric acid can be manufactured from ammonia	
	U)		= 39, $N = 14$, $O = 6$) (Your answer should include equations of re-	
		(12	- 35, 14 14, 6 0) (Your miswer should meridde equations of re	(7 ¹ /₂mark)
	c)	Sta	te what would be observed when;	
		i)	Copper (II) nitrate,	(01 mark)
		ii)	Silver nitrate,	(¹/2mark)
	d)	Wr	are strongly heated. ite equation(s) of reaction(s) that would take place in c (i) and (ii)	above. (03 marks)
13.	(a)	(i)	State what is meant by the term electrolysis.	(01 mark)
••		(ii)	State two factors that can determine the product formed at the electrodes during electrolysis.	(02 marks)
	(b)		efly describe how chlorine gas can be produced by electrolysis of centrated sodium chloride.	(5 ¹ /2mark)
61	(c)		olain why moist chlorine bleaches the colour of dyes where as dry s not.	chlorine (03 marks)
(w a labeled diagram of a setup of apparatus that can be used to p (II) chloride in the laboratory.	repare (3 ¹ / ₂ mark)
14.	9 0) Sev i) ii)	wage is a mixture of effluent and sludge. State the difference between effluent and sludge. State one use of sludge.	(02 marks) (01 mark)
	(b)	i) ii)	Briefly describe the processes involved in water purification. State how water can be detected in the laboratory.	(6 marks) $(1^{1}/_{2}mark)$
	(c)	St	tate what would be observed and write equation for the reaction ald occur when;	that
			a piece of sodium metal is lowered into a trough of water.	$(2^l/_2mark)$
		ii)	steam is passed over heated iron fillings.	(02 marks)

Name	Signature
School	Index No

545/2 CHEMISTRY Paper 2 July /August 2011 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES

- 'Section A consists of 10 structured questions. Answer all questions in this section.
- Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this section.
- Answers to section B must be written on the answer sheet/booklet and stapled at the back of the question paper.
- Show all your working clearly in both sections.

[1F = 96500 C, C = 12, H = 1, O = 16, Na = 23, Ca = 40, Molar gas volume at s.t.p = 22.4 dm³]

- 4	2	3	4	5	6	_ 7	8	9	10	11	12	13	14	Total
	- 1													20111

© WAKISSHA Joint Mock Examinations 2011

SECTION A (50 marks)

Answer all questions in this section.

A mixture of ethanol and a substance A was heated as shown in the diagram below.
 A colourless gas B was evolved.

	a) A	1)	Identity substances A and B	(1 mark)
		ii)	Write an equation for the reaction between ethanol and su	bstance A.
			6	(1½ mark)
		*******	······································	
	b)	i)	State what was observed in the test tube containing bromi	ne water.
				(1 mark)
• • • • • • • • • • • • • • • • • • • •				
		·ii)	Write an equation for the reaction in b (i) above	71.17

•	Ammo	onia wa	s mixed with oxygen and the mixture passed over heated							
	platin	um. A c	colourless gas X was evolved. The mixture was cooled for	ning a						
	reddish brown gas Y. Y dissolves in water forming a yellow liquid.									
	a)	i)	Identify X, Y and the yellow liquid	(1½ mark)						
	X									
	Y									
	Yello	w liqui	d							
		ii)	Write an equation leading to the formation of the yellow	liquid.						
				(1 ½ mark)						
	b)		nall amount of the pale yellow liquid was added to a beaker							
	U)	distilled water. To the resultant mixture was added solid sodium carbonate.								
		i)	State what was observed	(½ mark)						
		ii)	Write an equation for the reaction that took place.	(1½ mark)						
			*							
			9							
•	The	structu	re of an atom of element Z is $^{25}_{12}Z$.							
	a)	State	8							
		i)	the number of protons and neutrons in an atom of Z.							
		Neut	rons	(½ mark)						
		Proto	ons	(½ mark)						
		ii)	the group of the Periodic Table to which Z belongs	(1 mark)						
		8000000		839 25						

b) Chlorine gas was passed over heated Z. State what was observed (1/2 mark) ii) Write an equation for the reaction between Z and Chlorine $(1\frac{1}{2} \text{ mark})$ iii) The product of the reaction between Z and Chlorine was dissolved in water. State whether the resultant solution is neutral, acidic or alkaline. The variation of mass of reactants with time when calcium carbonate is reacted with 4. dilute hydrochloric acid is shown in the figure. Mass of reactants Time If B is for the reaction at 30°C, which curve would be obtained if the reaction is a) carried out at. 25°C (½ mark) i) 45°C (½ mark) ii) Explain why the curves meet at point X. b)

c)	i) How can th	ne decrease in mass of reactants be	increased?	(2 marks)
••••••				
		calcium carbonate reacted complete ric acid. What is the molar concen		
Cor	mplete the table below			(3 marks)
	Mixture	Method of separation	Principle behind separation	method of
a)	Ethanol and Water			
b)	Ink			1 2
of (VI	the test tube is forme I) solution green is evolution of	s heated, a colourless liquid which the deal. A colourless gas which turns solved and a reddish brown residual of Q in water the solution turns to	acidified potassium e S is formed. If ch	dichromate
a) Q		urless gas, Q and S		(½ mark
S				(½ mark
		AKISSHA Joint Monk Examinations 201	555	Turn

	b)	Name i)	The cation in the yellow solution	(1mark)
		ii)	The reagent that can be used to confirm the anion in Q.	(1mark)
	c)	Write b (ii)	an ionic equation for the reaction between the anion in Q and	the reagent in (1½ mark)
7.	Wate a)	er was ac State	lded to sodium peroxide powder. what was observed	(1mark)
.,	b)	i)	Write an equation for the reaction.	(1½ mark)
		ii)	State what would be observed if a litmus paper is dropped in resultant solution.	nto the (1 mark)
	c)	One nitra	drop of the resultant solution was added to an aqueous solution te.	
		i)	State what was observed.	(½ mark)

		ii)	Write an equation for the reaction	(1 mark)			
			•••••••••••••••••••••••••••••••••••••••				
8.	An ele	ectric current was passed through sodium chloride solution using a graphite a platinum cathode. i) State what was observed at each electrode					
		Catho	de	(½ mark)			
		Anode	<u> </u>	(½ mark)			
		ii)	What is the volume ratio of the products?	(½ mark)			

	b)	1)	an equation for the reaction if any at the anode	(1mark)			
			between the product at the anode and potassium bromide solution	••••••			
••••••			······································				
******	c)		explain why the anode must be: made of graphite and not platinu				
******				(1 mark)			
9.	A hydr	ocarbor	Y consists of 82.76% by mass of carbon.	*******			
	a)	i)	Determine the empirical formula of Y	(3 marks)			
				•••••••			
*******		*******					
			© WAKISSHA Joint Mock Examinations 2011	Turn Ove			

		e. Determine om temperatu	ermine the inperature = 24		
		ii)	molecular formula of Y. [Molar gas volume at 15	ANTONIO DE PORTO DE CARACITA DE LA C	(3 marks
			dm ³]		
• • • • • • •					200000
		••••			
					,,,,,,,,,,,,,

	c)	Comp	ound Z has molecular formula C ₄ H ₁₀ but a different	structure. Wh	at name ½ mark)
		is give	en to compound Y and Z?	()	2 IIIaik)
				No control the west	
10.	State	what wo	ould be observed and write an equation when carbon of	dioxide gas	(2 marks)
	a)	is bub	bled into sodium hydroxide solution for a long time.		(2 marks)
			*		
				*	
-5-5-7-6-7-6-1					
	b)	is bub	bled into 2 cm3 of distilled water and to the resultant s	solution is add	ded blue
		litmus	ę	((2 marks)

				••••••••••••••••••••••••••••••••••••••	
			80) 80)		

SECTION B (30 marks)

- 11. a) Describe how you would prepare zinc sulphate crystals in the laboratory using zinc granules. Write an equation for the reaction that takes place. (8 ½ mark)
 - b) The crystals in a) were dissolved in water to form an aqueous solution. The solution was divided into two portions. To the first portion was added ammonia solution drop wise until in excess.
 - i) State what was observed (1½ mark)
 - ii) Write equation(s) for the reaction(s) that took place. (11/2 mark)
 - c) Carbon dioxide gas was bubbled into the second portion.
 - i) State what was observed (1 mark)
 - ii) Write an equation for the reaction that took place (1½ mark)
 - d) How can an aqueous solution containing zinc sulphate and zinc nitrate be separated. (1 mark)
 - 12. The figure below summarizes a number of chemical processes. Study it and use it to answer questions that follow.

a)	i)	Identify catalyst P	(1 mark)						
	ii)	Identify solids $f Y$ and $f S$	(2 marks)						
	iii)	Write the conditions for optimum yield at A	(2 marks)						
b)	Writ	e equations for the reactions leading to							
	i)	Gas Z	(1½ mark)						
	ii)	Solid S	(1½ mark)						
c)	i)	Identify liquid ${f T}$	(1mark)						
	ii)	Write an equation for the reaction in C	(1½ mark)						
3	iii)	State one use of S	(1mark)						
d)	${f S}$ was dissolved in water to form an aqueous solution. The resultant solution was								
		led into two portions							
	i)	Blue litmus paper was dipped into the first portion. State	what was						
		observed.	(½ mark)						
	ii)	A few drops of lead(II) nitrate solution were added to the	second portion.						
		State what was observed and write an ionic equation for t	he reaction that						
		took place.	(2 marks)						
	iii)	Explain why in the test for the anion in ${f S}$ dilute hydrochl	oric acid must be						
		added.	(1 mark)						
a)	Desci	ribe with the aid of a diagram how the molar heat of combus	stion of ethanol						
		e determined in the laboratory.	(9 marks)						
b)	25 cm	n ³ of a solution containing 2.65 g of sodium carbonate in 25	0 cm ³ of solution						
	requi	red 20 cm3 of a monobasic acid for complete neutralization.	Determine the						
		concentration of the acid.	(6 marks)						

13.

14. a) Explain the following observations

- i) When silver nitrate solution is added to an aqueous solution of hydrogen chloride gas, a white precipitate is formed but there is observable change when silver nitrate is added to a solution of hydrogen chloride in methyl benzene. (3 marks)
- ii) 2M hydrochloric acid reacts faster with calcium carbonate powder than marble chips. (3 marks)
- b) Iron can be extracted from haematite in a blast furnace.
 - i) Write the chemical formula of haematite (1 mark)
 - ii) Name any other two ores from which iron can be extracted. (1 mark)
 - iii) Write an equation for the reaction leading to formation of iron in the blast furnace. (1½ mark)
 - iv) Name the major impurity in haematite (1½ mark)
 - v) Explain how limestone removes earthy impurities from the ore. (4 marks)
 - vi) Name a metal that is purified by electrolysis (1mark)

END

Name				 Signature	2		
School				 Index N	0		
545/2	1986		20	0000		<u>.</u>	
CHEMISTRY Paper 2		€7	(6)	\$ 800 mm			
July /August 2010 2 hours				ð			

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

Instructions to Candidates

- Section A consists of 10 structured questions. Attempt all questions in this section.
- Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Attempt any two questions from this section.
- · Answers must be written on the answer sheet/booklet and stapled at the back of the question paper.
- Show all your working clearly in both sections.

[1F = 96500C, C = 12, H = 1 O = 16, molar gas volume at s.t.p = 22.4dm^3]

	N.		0			For	exam	iner's	use or	ıly				
1	2	3_	4	5	6	7	8	9	10	11	12	13	14	Total
							14							*
								Ni.				- ×		

SECTION A (50 marks)

Answer all questions in this section.

1.	Below is a section of the Periodic T	able. The syr	mbols used are no	t the usual	symbols.
----	--------------------------------------	---------------	-------------------	-------------	----------

1	II	Ш	= =	-	IV	V	VI	VII
1			8			1		
2	X	Y	20.7			a		Z
3	.1							

a)	Write the electronic configuration of
----	---------------------------------------

: \	V	(1 mark)
1)	Λ	(I marry)

	-2020 Gr. (Pp.)	134
b)	Write	
U)	WITE	

 i)	an equation for the reaction between X and Z.	8	(1 ½ mark)

ii)	the formula of the sulphate of Y.	100	(1 mark)

		The second of th	E CONTRACTOR OF THE CONTRACTOR
•••••			•••••••
	۵).	Comment on the size of atoms of elements X Y and 7	(1

6)	Comment on the size of atoms of elements A, 1 and Z	* 5	(1 mark)
			• • • • • • • • • • • • • • • • • • • •

2. Complete the table below.

(4 marks)

Mixture	Method of separation	Principle behind method of separation
Water and ethanol		
Ink		
	1	

3. A current of 0.2A was passed for 60 minutes through dilute sulpheric acid using the set up below.

a)		Identify gas A.	(1 mark)
	ii)	Write an equation of the reaction leading to formation of gas B	¥
	4		
b)		culate the number of moles of gas A evolved.	(2 ½ mark
Aį		ow solid M dissolves in water with evolution of a colourless gas that re-li	
A I	oale yell	ow solid M dissolves in water with evolution of a colourless gas that re-li	

			Cultar adourlars (198	(1 mark)
	b)		State one use of the colourless gas	
		ii)	Write an equation for the reaction between the colourless gas and a	(1 ½ mark)
 5.	a)	i)	Define the term heat of combustion of a substance.	(1 mark)
		ii)	Write an equation for the complete combustion of ethane.	(1 ½ mark)
	b)	in o	en 448 cm ³ of ethane measured at standard temperature and pressure is exygen the heat produced raises the temperature of 100 g of water by 12 acity of water = 4.2 Jg ⁻¹ °C ⁻¹] Calculate the heat of combustion of ethan	ne. (2 ½ mark)
,,,,,,				
			-	
6	a)	Def	fine the term neutralization reaction.	(1 mark)

		for complete reaction. Write an equation for the reaction between sodium carbonate and hyd	rochloric acid.
		, , , , , , , , , , , , , , , , , , , ,	VALUE OF THE PARTY
1.	33	ii) Calculate the concentration of sodium carbonate in moldm ⁻³ .	(3 marks)
••••			
••••			
••••			
••••	Sulph	ur dioxide gas can be prepared in the laboratory by reacting hydrochloric acid	with substance
	Χ.	Name X.	(1 mark)
		Write an equation for the reaction between X and hydrochloric acid.	
	iii)	State conditions for the reaction in (ii) to take place.	(1 mark)
	b)	Copper metal reacts with sulphuric acid evolving a colourless gas	
		i) Identify the colourless gas	(1 mark)
••••		ii) State the property of sulphuric acid illustrated in its reaction with c	opper metal.
• • • • •			

•	Amm nitrog		produced on the industrial scale by the reversible reaction between	eaction between hydrogen and			
	a) .		Name the process by which ammonia is prepared.	(1 mark)			
		ii)	Write an equation for the reaction.	(1 ½ mark)			
••••		iii)	State the conditions for the reaction to take place.	(3 marks)			
	b)	Calc	ulate the percentage of nitrogen in ammonium phosphate.	(1 mark)			
	·A wh	nite pov y. X rea	wder X when heated decomposes evolving a colourless gas Y whacts with dilute hydrochloric acid evolving Y. An aqueous soluthite precipitate insoluble in excess sodium hydroxide.	nich turns lime water tion containing cations ir (1 mark)			
••••	- 	ii)	Name the actual anion in X	(1 mark)			
		iii)	Identify the possible cations in X.	(1 mark)			
		970					

a)	i) 	Write an equation for the reaction.	
	ii)	State the conditions for the reaction.	(1 mark)
b)	How	can the rate of the reaction be increased?	(1 mark)
		SECTION B (30 marks)	
wer any	two que	estions from this section	
a)	Hydr i) ii) iii) iv)	ogen chloride gas can be prepared from common salt. Name the other reagent used. State the condition for the reaction. Write an equation for the reaction. Sate how hydrogen chloride gas can be tested in the laboratory.	(1 mark) (1 mark) (1 ½ mark) (1 mark)
b)	Hydr i) ii) iii)	rogen chloride reacts with iron filings to form solid X. Name solid X. Write an equation for the reaction. Draw a diagram to show how the reaction can be carried out.	(1 mark) (1 ½ mark) (2 ½ marks)
c)	Solid aque i) ii) iii)	I X was dissolved in water to form an aqueous solution. To the solution ous ammonia drop wise until in excess. State what was observed. Write ionic equation for the reaction(s) that took place. State what would be observed and write an equation for the reaction when lead (II) nitrate is added to an aqueous solution of X.	(1 ½ mark) (1 ½ mark)
A me	etal nitra	ate X when heated decomposes forming a yellow residue when hot; the bling. Reddish brown fumes Y and colourless gas Z are evolved.	residue turns
a)	Ident	ify X, Z and Y.	(3marks)
b)	Write i)	e equation for the decomposition of X.	(1 ½ mark)
	ii)	the reaction of Y with water.	(1 ½ mark)
	a) b) c) A me white a)	a) i) ii) b) How wer any two que a) Hydr ii) iii) iii) b) Hydr i) iii) iii) c) Solid aque i) iii) iii) A metal nitra white on cod a) Ident b) Write i)	ii) State the conditions for the reaction. b) How can the rate of the reaction be increased? SECTION B (30 marks) wer any two questions from this section a) Hydrogen chloride gas can be prepared from common salt. i) Name the other reagent used. ii) State the condition for the reaction. iii) Write an equation for the reaction. iv) Sate how hydrogen chloride gas can be tested in the laboratory. b) Hydrogen chloride reacts with iron filings to form solid X. i) Name solid X. ii) Write an equation for the reaction. iii) Draw a diagram to show how the reaction can be carried out. c) Solid X was dissolved in water to form an aqueous solution. To the solution aqueous ammonia drop wise until in excess. i) State what was observed. ii) Write ionic equation for the reaction(s) that took place. iii) State what would be observed and write an equation for the reaction when lead (II) nitrate is added to an aqueous solution of X. A metal nitrate X when heated decomposes forming a yellow residue when hot; the white on cooling. Reddish brown fumes Y and colourless gas Z are evolved. a) Identify X, Z and Y. b) Write equation i) for the decomposition of X.

	c)		sidue was dissolved in dilute hydrochloric acid and to the resultant solution as ammonia drop wise until in excess.	was added
		i) ii)	State what was observed. Write equation for the reaction(s) that took place in (c) above.	(1 mark) (3 marks)
	d)	Descri	be how the residue can be used to prepare hydrated Zinc sulphate.	(5 marks)
13.	a)	i). ii)	Explain the term addition polymerization. Name the natural polymer and one synthetic polymer formed by addition	(2 marks)
		iii)	polymerization. State one limitation of synthetic polymers.	(2 marks) (1 mark)
	b)		ic compound A contains 66.7% carbon, 13% hydrogen, the rest being oxyg n vaporization occupied 224 cm ³ at s.t.p.	en. 0.46 g
		i) ii)		(2 ½ mark) (2 ½ mark)
3	c) ,	Descri	be how A can be prepared from millet flour.	(5 marks)
14.	a)	Name	a reagent that can be used to distinguish between each of the following pai ounds / ions. In each case state what will be observed.	
	r	i)	SO_4^{2-} (aq) and CO_3^{2-} (aq).	(2 ½ mark)
•	**	ii)	SO_4^{2-} (aq) and CO_3^{2-} (aq). C_2H_6 and C_2H_4	(2 ½ mark)
· · ·	,,b)	i) ii)	s carbon dioxide gas was bubbled into an aqueous solution of calcium hydr State what was observed. Write equations for the reactions that took place.	(1 mark) (3 marks)
	9	iii)	Burning magnesium was plunged into a gas jar of carbondioxide. State w	hat was
	Y 1,7		observed and write an equation for the reaction.	2 ½ marks)
***	c)	i)	What is an ore?	(1mark)
			Name two ores from which iron can be extracted. Write an equation leading to the formation of iron in the blast furnace. (1	(1 mark)
į,	y el		END	٠,

END

Name	Signature
	W
School	Index No

545/2 CHEMISTRY Paper 2 July /August 2012 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES

- Section A consists of 10 structured questions. Answer all questions in this section.
- Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this section.
- Answers to section B must be written on the answer sheet/booklet and stapled at the back of the question paper.
- · Show all your working clearly in both sections.

[1F = 96500C, C = 12, H = 1, O = 16,Na = 23, Ca = 40, Molar gas volume at s.t.p = $22.4dm^3$]

	1000	2	100			*******	VI D W.	e only					•
1 2	3	4	5	6	7	8	9	10	11	12	13	14	Total
		1 1		30 0			-	1			100		E-1

© WAKISSHA Joint Mock Examinations 2012

SECTION A (50 MARKS)

Answer all questions in this section

	(Imark)
(b) State whether the following are physical or chemical chang	
(i) Heating Iodine	(Imark)
(ii) Heating a piece of Magnesium ribbon in air.	(Imark)
El Company and the Company of the Co	(¹ /2mark)
(c) State what was observed when Iron (III) chloride was heated	(Imark)
(a) Steam was passed over heated magnesium ribbon in a tube,(i) State what was observed	(Imark)
(ii) Write an equation for the reaction that took place.	· (1 ¹ /2mark)
(b) The gaseous product formed in (a) was dried and passed over	r heated
Lead (II) oxide in an ignition tube.	
(i) State what was observed	(Imark)
(ii) Write an equation for the reaction that took place.	

3.	(a)	Ammonia when mixed with oxygen and passed over heated catalyst, steam and gas x were formed.	president of the second
		(i) Name gas X	(1mark
		(ii) Write equation for the reaction leading to the formation ($(1^{\prime}/_{2}mark)$
	(b)	of chlorine.	nto a gas jar (Imark)
		(ii) Write equation for the reaction that took place.	(1 ¹ / ₂ mark)
4.	(a)	Sodium Iodide solution was added to Lead (II) nitrate solution. (i) State what was observed.	(1mark)
		(ii) Write ionic equation for the reaction that took place.	$(1^l/_2 mark)$
	(b)	Chlorine gas was bubbled through the reaction mixture in 4(a) (i) State what was observed.	(1mark)
	. • •	(ii) Write equation for the reaction that took place.	N
5.	(a)	When 1.34g of Copper was heated in air, 1.68g of an oxide was f Calculate the emperical formula of the oxide. ($Cu = 63.5 O =$	formed. 16) (2 ¹ /mark)
			## ## ## ## ## ## ## ## ## ## ## ## ##
	(b)	To the oxide formed in 5(a) was added dilute hydrochloric acid.	**********
		(i) State what was observed	(Imark)
		© WAKISSHA Joint Mock Examinations 2012	Turn Over
			3

/ \	Write equation for the reaction that took place.	$(1^{1}/_{2}mark)$

10	Then ammonia gas was bubbled through a solution containing 2 ons, a white precipitate was formed which later dissolved.	2. Y
(i)	Write equation for the reaction leading to the formation of the precipitate.	ne white (1 ¹ / ₂ mark)
r)		
(i	ii) Identify the cation in the solution formed when the precipital dissolved.	ate (1mark)
1500	***************************************	
(b) S	State two ways in which the white precipitate can be obtained frecolourless Solution.	om the (1mark)
14		
70 8		
. (a)	What is meant by the term enthalpy of combustion?	(2marks)

(b) ·	The enthalpy of combustion of methanol (CH ₃ OH) is 715 KJ/me of methanol in a lamp is used to heat 250cm ³ of water at 25 ⁰ C. I maximum temperature attained by the water after heating (Dens 1g/cm ³ , specific heat capacity of water = 4.2Jg ⁻¹ K ⁻¹ , Rmm of me	Determine the ity of $H_2O =$
		•
		,
		••••••
8. (a)	Zinc carbonate was strongly heated in a test tube until there was further change.	s no
	(i) State what was observed.	(1mark)
	120	

		(ii) Write equation for the reaction that took place.
		:
· A))	To the residue in 8(a) was added dilute hydrochloric acid solution.
(-	- /	(i) State what was observed. (1mark)
\$ 8	×	
		/11/magnah
	3	(ii) Write ionic equation for the reaction that took place. (11/2mark)
9. ((a)	Oxygen can be prepared in the laboratory from hydrogen peroxide and substance W. Identify substance W and state its role (2marks)
	12	
((b)	Potassium chlorate decomposes on heating to give oxygen according to
		the following equation.
		$2KCIO_{3(s)} \underline{\qquad heat \qquad} 2KCI_{(s)} + 3O_{2(g)}$
		(i) Calculate the volume of oxygen produced at room temperature when $10.6g$ of Potassium chlorate was heated. (K = 39, CI = 35.5, O = 16,
	\$0	1 mole of a gas at r.t.p occupies 24dm ³) (3marks)
		I mote of a Bas as improved 2 imm.
3		
.0		
	Ŷ.	
10. ((a)	(i) Name one substance which when reacted with dilute sulphuric acid
		can produce sulphur dioxide. (1mark
		(ii) Write equation for the reaction leading to the formation of sulphur
		dioxide. (1½mark)
		and the second s
	14	
	8	
	15	Turn Over
		© WAKISSHA Joint Mock Examinations 2012 5

(0)	(1)	sulphur dioxide.	(Imark)
	••••		
	•••••		
	 (ii)	State what is observed when the named reagent is used.	(1mark)
(*)			
*		***************************************	
(c)	Sta	te the property of sulphur dioxide demonstrated in 10(b) abov	(½mark)
		SECTION B: (30 MARKS)	
		Answer any two questions from this section.	
l. (a)	(i)	State what is meant by the term soap?	(2marks)
	(ii)	Briefly describe how a dry sample of soap flakes can be prepared in the laboratory.	(4 ¹ / ₂ marks)
(b)		vater sample X was boiled and on cooling was tested by shakin	
		h a known volume of soap solution. A greasy scum and a clou ution were observed.	ay
	(i)	State what is meant by scum?	$(1^{1}/_{2}mark)$
	(ii)	Write an ionic equation for the reaction leading to the formation of scum.	(1 ¹ / ₂ mark)
(c)	(i)	Name one compound that can be used to stop scum formation in the water sample X.	n (1mark)
	(ii)	Write equation for the reaction that would take place when to compound named in C (i) is used.	he (1 ¹ / ₂ mark)
(d)) Des	scribe how soap can remove grease from fabrics when washed	l. (1 ¹ / ₂ mark)
	8		

- Describe how a dry sample of hydrogen chloride gas can be $(4^{\prime}/_{2}marks)$ prepared in the laboratory. (Diagram not required)
 - (b) Draw a well labeled diagram to show that hydrogen chloride gas (2½ marks) is highly soluble in water.
 - (c) Using equations explain why when hydrogen chloride gas was bubbled into silver nitrate solution, a white precipitate Q was formed. Q dissolved in ammonia to form a colourless solution. (4 /marks)
 - (d) The table below shows the variation in solubility of hydrogen chloride with temperature.

Temperature ⁰ C	0	30	40	50	60
Solubility of HCI in g/L of water	824	672	632	596	560

- Plot a solubility curve of hydrogen chloride in g/litre against (41/2marks) temperature.
 - (ii) From your graph determine the solubility of hydrogen chloride at 20°C (½ mark)
- 13.(a) Describe how dry crystals of Lead (II) nitrate can be prepared in the $(4^{1}/_{2}marks)$ laboratory from Lead (II) oxide.
 - (b) State what would be observed when to an aqueous solution of Lead (II) nitrate was added.
 - Sodium chloride solution.

(ii) Zinc powder.

(1/2 mark)

(1/2 mark)

(c) (i) Write equation for the reaction that took place in b(i)

 $(1^{l}/_{2}mark)$

(ii) Explain your answer in b (ii)

(Your answer should include equation for the reaction)

 $(4^{1}/_{2}marks)$

(d) Lead (II) nitrate decomposes when heated according to the following equation.

 $2Pb(NO_3)_{2(s)} \longrightarrow 2PbO_{(s)} + 4NO_{2(g)} + O2_{(g)}$

 $(2^{1}/2marks)$

Calculate the total volume of the gaseous product formed at s.t.p when 3.31g of Lead (II) nitrate is decomposed. (Pb = 207, O = 16, N = 14, 1 mole of a gas occupies 22400cm³ at s.t.p)

Turn Over

WAKISSHA Joint Mock Examinations 2012

- (e) Explain why during the preparation of Lead (II) sulphate, Lead (II) nitrate instead of Lead (II) oxide is reacted with sulphuric acid. (3marks)
- 14. (a) (i) State what is meant by rate of reaction? (1mark)
 - (ii) With the aid of a well labeled diagram, describe an experiment that can be carried out to determine the rate of production of carbon dioxide gas from calcium carbonate and hydro chloric acid.

(3marks)

(b) The table below shows the variation in mass of calcium carbonate with time when reacted with dilute hydro chloric acid.

Mass of CaCO _{3(g)}	84	64	49	27	11	9	8
Time (Min)	0	1	`2	4	. 7	8	9

- (i) Sketch a graph to show how the mass of calcium carbonate varies with time. (4marks)
- (c) From your graph determine,
 - (i) The rate of reaction at 3 minutes. (2marks)
 - (ii) The time taken for half of the calcium carbonate to react. (Imark)
- (d) State at least two ways in which the rate of production of carbon dioxide can be increased. (2marks)

END

Name	Centre/Index No
Signature	n.

545/2 CHEMISTRY PAPER 2 July/August 2009 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS Uganda Certificate of Education

CHEMISTRY Paper 2

2 Hours

Instructions to candidates

- Attempt all questions in section A and Two questions from section B.
- Answers to section A must be written in the spaces provided.
- Non programmable scientific calculators may be used.
- In both sections, all working must be clearly shown.

$$(C=12, O=16, H=1, Zn=65, S=32, Cu = 64)$$

Molar gas volume at room temperature = 24lMolar gas volume at s.t.p = 22.4l

		- V				UI C.		ner .	use o	JALLY				
1	2	3	4	5	6	7	8	9	10	11	12	_13	14	Total

Turn Over

Section A Attempt all questions in this section

ι.	(a)	Wate: (i)	r was added to solid sodium peroxide State what was observed	(1mark)
		(ii)	Write an equation for the reaction	(1½ mark)
	*****	(iii)	State one use of the gaseous product	(1mark)
9	(b)	The	solution from (a) above was added to magnesium nitrate s te an equation for the reaction	
2.	(a)	A h	ydrocarbon Z contains 85.7% carbon. Determine the empir	
		of 2	Z	
	•••			•••••
•	•••			
	(1	o) 2.	8g of Z vaporization occupied 2.4dm ³ at room temperature. i) Determine the molecule formula of Z	(3 marks)
	(O n)			

		ii)	Wı	rite the s	tructure	of Z					(1 mark)
3.	State the method of separation and the principle behind the method of the following mixtures.										
	(a)	Iron :	Iron filing and sulphur Method								(½ mark)
		Princ	ciple								(1mark)
			•••••								
	(b)) Water and ethanol Method								(½ mark)	
		Princ	ciple							138	(Imark)
			37	as passe	d over be	antad ire	on filing	Black	crystals	were	formed
4	(a)	(i)	1	Vame the	gas						(1mark)
×		(ii)	Wri	te an equ	ation for	r the rea	ction				(1 ½ mark)
	(b)	The	e blac	ck crysta led sodiu	ls were o m hydro	lissolve xide sol	d in wate ution.	er and to	the re	sultan	tsolution
		. (i)		State wh	at was ol						(1mark)
	****		•••••								
	••••	ii)		Write iro			the reac	tion			(1 ½ mark)
	••••	•••••									
5.	(a)			the term	electroly	yte					(2 mark)
	•••										

	(b) A current of 0.2A was passed through sodium hydroxide s minutes. Calculate the volume of gas evolved at the anode	(4 ½ mark)
	1	
	on the state of th	
6.	Concentrated sulphuric acid was added to heated copper metal ar product was passed into a wash bottle containing liquid X.	nd the gaseous
	(a) State (i) what was observed	(1 mark)
	(1) What was deserved	
	•••••••••••••••••••••••••••••••••••••••	
	(ii) the name of X	(1 ½ mark)
	. (n) the name of 1	
	(iii) The role of X	(1 mark)
	(b) Write equation for the reaction	(1 ½ mark)
	(b) White equation for the reaction	
•		
7.	When a colourless gas X is passed over heated copper(II) Oxide formed and an inert gas Z is given off.	a brown solid is
	(a) Name the gasses X and Z	(1mark)
	' X	
	Z ₁	
	(b) Write the equation for the reaction between X and coppe	8 8
		(1 ½ mark)

	(c)	State two uses of X	(2 marks)
8.	(a) ' 	Define the term standard solution	(2 marks)
	(b)	2.4g of magnesium metal reacted completely with 25cm ³ of hydrochloric acid. Calculate the concentration of hydrochlor	dilute ic acid in dm ³ . (4 marks)
100	• • • • • •		•••••
	•••••		
	*****		***************************************
	•••••		*******
			==
	•••••	A SALVER AN	***************************************
9.	(a)	Sketch a graph of hydrogen evolved with time when excess added o 100.0 cm ³ of a 1.0M sulphuric acid at room tempera	magnesium is ture. (2 marks)
	118181818 B1818		
	7		
	• • • • • •		

	(b)	On the obtain (i)	e same graph in (a) above, sketch another graph that would be same graph in (a) above, sketch another graph that would be when magnesium is added to 100.0cm ³ of a 2.0M sulp state the factor that affects the rate of the chemical react investigated.	ld be . bhuric acid tion being (1 mark)
	,	(ii)	Apart from the factor in c(i) above state one other factor affects rate of chemical reactions	that (1mark)
0.	The a (a)	itomic n (i)	numbers of elements X and Q are 11 and 17 respectively, st the type of bond that is formed when X and Q combine	(11111111)
				100
		(ii)	the number of elections in the outer most shell of Win the compound formed in (i) above	(1mark)
	(b)	(i)	e the formula of: the sulphate of X	(1mark)

		(ii)	the ion formed by Q	(1mark)
	(c)		whether the compound formed between X and Q conducts ent. Give a reason for your answer	electricity (1mark)
				···········

Section B

Attempt any Two questions from this section, begin each question on a fresh page.

11.	Two g burns	gasses X in air er	and W are described, and with oxygen, tu	X does not burn, fumes in mo	oist air. W				
	(a)	(1)	Identify and state the dipreparation of X and W	rying agent used for the labor					
	8			alphuric acid can not be used	(2 mark) to dry W (1 mark)				
	(L)	W							
	(p)	Write	equation for the laborate	ory preparation of X and W	(3marks)				
	(c)	write a	in equation for the com	bustion of W	(1 ½ mark)				
	(d)		bubbled into aqueous s	ilver nitrate solution	The second second second				
		(i)	State what was observe		(1mark)				
	(0)	(ii)	write equation for the	reaction (s) that took place	(2marks)				
	(e)	w was	to zinc sulphate solution	orm an aqueous solution. The n drop wise until in excess.	solution was				
A		(i)	State what was observe	ed	(11/ morls)				
. •		(ii)		he reaction(s) that took place	(1½ mark) (3 marks)				
		()	Without equation(b) for t	ne reaction(s) that took prace	(5 marks)				
12.	(a)	Define	the term enthalpy of n	eutralization	(2 marks)				
	(b)			ralization of hydrochloric acid	d by sodium				
	8 8	hydro	hydroxide can be determined in the laboratory. Show how the heat of						
		neutra	neutralization can be obtained from experimental results. (8marks)						
	(c)	(i)		the reaction between sulphuri					
			sodium hydroxide		(1½ marks)				
		(ii)	When 4.6g of ethanol,	C2 H5OH was burnt the heat	produced				
			raised the temperature	of 250g of water from 28.5 to	o 42°C				
			Calculate the enthalpy	of combustion of ethanol	(3 ½ mark)				
12	(0)	Mana							
13.	(a)	Name		outpoots d.l					
		(i) (ii)	two metals that can be two ores from which i	extracted by electrolysis	(2marks)				
	(b)	C130 C1 2 C1 2 C1		h iron can be extracted from t	(2marks)				
O)	(0)	(No d	iagram required) Write	equations for the chemical re	ne ore(s) above				
		involv		equations for the chemical re	(8marks)				
		mvor	·cu·		(omarks)				
	(c)	(i)	Define the alloy		(1mark)				
	()	(ii)		e following table by stating th	ne composition				
		3.00	of the following alloy:		(2marks)				
	,								
			Alloy	Composition					
			Solder						
			Steel						

14	(a)	Ethene can be prepared from ethanol by reacting ethanol with sulphuric		
		(i) the conditions for the reaction (ii) the property of sulphruric acid being demonstrated	?marks) (1mark) ?marks)	
	(b)	Ethene was converted into the structure ——CH ₂ CH ₂ CH ₂ CH ₂ — Name:		
		(i) the process by which the structure is formed (1n	nark)	
		(ii) the structure (1n	nark)	
		(iii) state one use the structure (1m	nark)	
	(c)	Describe how you would prepare dry sample of copper(II) sulphate		
	(-)	crystals in the laboratory. Write an equation for the reaction that takes place. (7marks)		

END