Name		 	 Signature	 	
School	,	 	 Index No.	 · · · · · · · · · · · · · · · · · · ·	

545/2 CHEMISTRY Paper 2 July/August 2018 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES;

- Section A consists of 10 structured questions. Answer all questions in this section.

Answers to these questions must be written in the spaces provided.

. Section B consists of 4 semi - structured questions. Answer any two questions from this section.

Answers to section B must be written in the answer booklet/sheets provided and stapled at the back of the question paper.

Show all your working clearly in both sections.

Where necessary use;

 $[Mg = 24 \ Ag = 108, C = 12, O = 16, H = 1, Molar gas volume at s.t.p = 22.4dm^3]$

				i i		UI CA	T	er's u	se om	<u> </u>	* * *	200		
1	. 2	3	4 .	5	6	7	8.	9	10	11	12	13	14	Total
				. 1						•	22-			4
												: .	100 0	
	1.0				- 1									

SECTION A

Answer all questions in this section.

1. a)	Define the term "flame".	ma
		· ·
b)	Figure 1 below is the structure of a Bunsen burner luminous flame obtained as a i of burning methane. Study it and answer the questions that follow.	es
	region X	
	luminous and yellow	
	region Y Fig 1 air rises	
	State what is observed when a match stick head is put at;	rk
	, 105,511	_
	ii) region Y(\frac{1}{2}\text{ mar}	k)
c)	Briefly explain your answer in b(ii) aboye. (1 mar	k) -
d) ·	Write the equation of the reaction taking place at the luminous and yellow zone.	-
	(1 ¹ / ₂ marks)
2. a)	The diagram below shows a setup of apparatus that can be used to react Magnesium ribbon with steam.	
	Glass tube	
	Magnesium ribbon	
	heat heat	
	Cotton wool Soaked in water State what was observed inside when the tube was strongly heated. (1 mark)	
	i) State what was observed histor when the tube was strongly heated. (I mark)	

ii)	Writ	e the equ	nation fo	r the rea	ction the	at took p	lace in th	ne tube.	(¹/₂ marl
	`` 	, · · · ·		·		· .		<u> </u>	
b) G	as Y. was	passed o	over heat	ed coppe	er (II) ox	ide.	7.1.		(1 ½ mark
i)	Wri	te the eq	uation fo	or the rea	ction the	it took p	lace.		
	_	• • •		·			Ifth		
	The residusolution, a	queous a	mmonia	lved in o was add	lilute hyd	drochlori wise unti	c acid ar I in exce	id to the	resultant (1 mark)
	ii) Wr	ite the io	nic equa	tion for t	he reacti	on that to	ook place		(1 ¹ / ₂ marks)
				: :::::::::::::::::::::::::::::::::::::		•		· · · · · · · · · · · · · · · · · · ·	
3. a)	Define th	e term ba	sicity of	an acid.					(1 mark)
							2		
b)	State one i) Di	example basic	in each o	ase of a	mineral a	acid that	is;		(lmark)
	ii) M	ono basic							(1 mark)
·c)		rite the ed imonia.	quation fo	or the rea	ction bet	ween the	acid nan	ned in b(i	i) and aqueous (1 ¹ / ₂ marks)
		·							*
	ii) St	ate one us	se of the	product i	n c(i) abo	ove.			(¹/₂mark)
The fi	gure belov nts used.	v shows p	oart of the	e periodio	table. T	he letters	are not t	he usual	symbols of the
	· I	II :	III.	IV	V	VI :	VII:	VIII	
						L		Y	
			М		Н				
	х	K		. J			P		
	F.	Z							

03.1	t sets belonging to the group of;
a) :	Give the general name given to the elements belonging to the group of;
	i) X
	ii) Z
L)	iii) P (1½mark) Arrange elements F, K, M, X and Z in order of their increasing reactivity (1 mark)
. 0)	Attalige clements 1, 12, 1-3
• • • • • • • • • • • • • • • • • • • •	
c)	State whether the compound formed between the following pairs of elements conduct or do not conduct electricity. i) J and P
	(i) Mandi
ď	Name the conducting species in:
	i) Element Z(1/2 mark)
* .	ii) Compounds formed between M and L
5. a) Define the term Molar gas volume. (1 mark)
10.	
600 E	
1	Silver nitrate crystals decompose on heating according to the equation. $2AgNO_3(s) \longrightarrow 2Ag(s) + 2NO_2(g) + O_2(g)$ Calculate the mass of silver nitrate required to produce 448cm ³ of nitrogen dioxide. (Ag = 108, N=14, O = 16, 1 mole of a gas occupies 22.4dm ³ at s.t.p) (2 ¹ / ₂ marks)
	Suggest one anion that can be identified by silver nitrate solution and state the observation. (1 ¹ / ₂ marks)
6.	A mixture of sulphur and concentrated nitric acid was heated in a round bottomed flask (1 mark)

a) Chlorine gas can be prepared in the laboratory by heating concentrated hydrochloric acid and substance Z. i) Identify Z. (1/2 mark) Write the equation for the reaction leading to the formation of chlorine. (11/2 marks) b) Dry chlorine gas was passed separately over dry and damp red litmus paper. State what is observed with; i) Dry red litmus paper (1/2 mark) ii) Damp red litmus paper (1/2 mark)	b)	The gain		(1 mark
a) Chlorine gas can be prepared in the laboratory by heating concentrated hydrochloric acid and substance Z. i) Identify Z. (1/2 mark) Write the equation for the reaction leading to the formation of chlorine. (11/2 marks) b) Dry chlorine gas was passed separately over dry and damp red litmus paper. State what is observed with; i) Dry red litmus paper (1/2 mark) ii) Damp red litmus paper (1/2 mark)				
acid and substance Z. i) Identify Z. (1/2mark) Write the equation for the reaction leading to the formation of chlorine. (11/2 marks) b) Dry chlorine gas was passed separately over dry and damp red litmus paper. State what is observed with; i) Dry red litmus paper (1/2 mark) ii) Damp red litmus paper (1/2 mark)		ii)	Write an equation for the reaction in b (i) above	(1 ¹ / ₂ marks)
acid and substance Z. i) Identify Z. (1/2mark) Write the equation for the reaction leading to the formation of chlorine. (11/2 marks) b) Dry chlorine gas was passed separately over dry and damp red litmus paper. State what is observed with; i) Dry red litmus paper (1/2 mark) ii) Damp red litmus paper (1/2 mark)				<u> </u>
acid and substance Z. i) Identify Z. (1/2mark) Write the equation for the reaction leading to the formation of chlorine. (11/2 marks) b) Dry chlorine gas was passed separately over dry and damp red litmus paper. State what is observed with; i) Dry red litmus paper (1/2 mark) ii) Damp red litmus paper (1/2 mark)				
ii) Write the equation for the reaction leading to the formation of chlorine. (1½ marks) b) Dry chlorine gas was passed separately over dry and damp red litmus paper. State what is observed with; i) Dry red litmus paper (½ mark) ii) Damp red litmus paper	a)		and substance Z.	
b) Dry chlorine gas was passed separately over dry and damp red litmus paper. State what is observed with; i) Dry red litmus paper (1/2 mark) ii) Damp red litmus paper (1/2 mark)			Identity Z.	
b) Dry chlorine gas was passed separately over dry and damp red litmus paper. State what is observed with; i) Dry red litmus paper (1/2 mark) ii) Damp red litmus paper (1/2 mark)		1117	Write the equation for the reaction leading to the formation of ch	lorine.
State what is observed with; i) Dry red litmus paper (1/2 mark) ii) Damp red litmus paper (½ mark)		11)	Write the equation for the reaction reading to the remainer of the	(1 ¹ / ₂ marks)
State what is observed with; i) Dry red litmus paper (1/2 mark) ii) Damp red litmus paper (½ mark)				
i) Dry red litmus paper (1/2 mark) ii) Damp red litmus paper (½ mark)				
ii) Damp red litmus paper (½ mark)	b)			per.
	b)		what is observed with;	*
	b)		what is observed with;	*
c) Write equation for the reactions in b (ii) above (2 marks)	b)	State i)	what is observed with; Dry red litmus paper	(¹/₂ mark)
c) Write equation for the reactions in b (ii) above (2 marks)	b)	State i)	what is observed with; Dry red litmus paper	(¹/₂ mark)
	b)	State i)	what is observed with; Dry red litmus paper	(¹/₂ mark)
		State i) ii)	what is observed with; Dry red litmus paper Damp red litmus paper	(½ mark)
		State i) ii)	what is observed with; Dry red litmus paper Damp red litmus paper	(½ mark)
	c) Wh	State i) ii) Write	what is observed with; Dry red litmus paper Damp red litmus paper e equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metal was	(1/2 mark) (1/2 mark) (2. marks)
	c) Wh B h	State i) ii) write	what is observed with; Dry red litmus paper Damp red litmus paper e equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metal was burns in air forming an acidic gas Y.	(1/2 mark) (1/2 mark) (2 marks)
a) (i) Identify gases;	c) Wh B h	State i) ii) write	what is observed with; Dry red litmus paper Damp red litmus paper e equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metal was burns in air forming an acidic gas Y.	(½ mark) (½ mark) (2 marks) formed, Gas
a) (i) Identify gases; A(1/2 mark)	c) Wh B h	State i) ii) write	what is observed with; Dry red litmus paper Damp red litmus paper e equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metal was burns in air forming an acidic gas Y. Identify gases; A	(½ mark) (½ mark) (2 marks) formed, Gas
a) (i) Identify gases; A	c) Wh B h	State i) ii) write	what is observed with; Dry red litmus paper Damp red litmus paper (II) oxide was separately treated with gases A and B, lead metal was burns in air forming an acidic gas Y. Identify gases; A B	(½ mark) (½ mark) (2 marks) formed. Gas (1/2 mark) _(1/2 mark)
a) (i) Identify gases; A	c) Wh B h	State i) ii) write nen Lead nowever l (i)	what is observed with; Dry red litmus paper Damp red litmus paper e equation for the reactions in b (ii) above (II) oxide was separately treated with gases A and B, lead metal was burns in air forming an acidic gas Y. Identify gases; A B Y	(1/2 mark) (1/2 mark) (2 marks) formed. Gas (1/2 mark) (1/2 mark) (1/2 mark)

ъ)		marks)
	i) gas A reacts with lead (II) oxide.	
	(1 ¹ /:	marks)
	ii) gas B reacts with air to form Y.	<u> </u>
	Define the term saturated hydro carbon.	(1 mark)
9 a)	Define the term saturated in	
	and athane (I	mark)
b)	Give the structural difference between ethene and ethane (1	
	i) Name one reagent that can be used to distinguish ethene from ethane in	the /2mark)
	i) Name one reagent that can be about 1 laboratory.	
, ;	ii) State what is observed when the reagent named in b(i) above is separate treated with ethene and ethane.	(1 mark)
		ed in ¹ / ₂ mark)
35	b(i) above.	
	Define Enthalpy of combustion.	(1 mark)
10. a)		
b)	When 3.2g of Methanol was burnt completely, the heat produced raised the temperature of 50g of water from 24.5°C to 37°C. Calculate the heat of comb	oustion of
	Methanol (C=12, H=1, O=16, specific heat capacity of water is $4.2J/g/^{\circ}$ C; 1 mole of weighs 32g)	methanol 3 marks)
		· · · · ·
c)	State one use of methanol other than being a fuel	(1 mark)

SECTION B

Answer any two questions in this section.

11.	a).	What is meant by reaction rate?	(1 marl
	b) ·	Describe an experiment to show the effect of concentration of reactants of the reaction.	on the rate (7 mark
	c)	 2.4g of Magnesium powder was added to 25cm³ of dilute sulphuric acid i) Sketch a graph to show how the rate of the reaction would vary v temperature. 	l at 23°C. vith (2 marks
		ii) On the same graph, sketch another graph to show what would hap rate when the temperature was increased to 30°C but keeping the Magnesium powder.	mass of (1 mark
		iii) Explain the shape of your graphs in c(ii) above.	(1 mark)
		iv) Calculate the molarity of the acid (Mg = 24, H=1, S = 32, O = 10)	5) (3 marks)
12.	a)	i) State one reason why air is considered a mixture and not a compou	ınd. (1 mark)
		ii) Name one method by which the components of air can be separated	10.00
	b) .	Oxygen gas can be prepared in the laboratory by addition of water to subs i) Identify Q.	tance Q (1 mark)
	a [*] see	ii) Write the equation for the reaction between water and Q.	(1 ½ mark)
	2	iii) Draw a well labelled diagram of the setup of apparatus that can be a prepare oxygen from substance Q.	ised to (2 ¹ / ₂ mark)
	· ċ)	ii) Write equation for the reaction that took production	(1 mark) 1½ marks)
	d)	= 1.:- cour observation in d(i) above.	(1 mark)
			(1 mark)
13.	e) a)	State how the gaseous product in(c) can be identified in the laboratory. Describe with the aid of a diagram how a dry sample of hydrogen sulphide g	gas can be (4 marks)
	b)	(ii) Write equations to support your answer in o(1) abovo.	(1 mark) 1/ ₂ marks)
	12 ² 0		Turn Over

	•	dioxid	e.
***	c)	A gas jar of hydrogen sulphide was inverted over one with sulphu dioxid	(1/2 mark)
	•	Write equations for the reaction that took place.	(1 ¹ / ₂ marks)
	d)	With the aid of equations, show how sulphur can be converted to sulphur.	(6 ¹ / ₂ marks)
14	a)	State one difference between fats and oils.	(1 mark)
. 14.	b)	Soap is prepared from vegetable oil and sodium hydroxide solution. i) Name the process of manufacture of soap.	(1 mark) (1 mark)
		ii) State the conditions for the reaction.iii) Name one substance that must be added to precipitate out soap.	(1 mark)
	c)	Describe how soap can clean dirt on a piece of cloth.	(5 mark)
	ď)	Soap is one of the substances that can pollute water. Describe the procest polluted water treatment. Give two importance of the bi-products of sewage treatment.	(4 marks)
	e)	Give two importance of the or present	

END

Name	Signature
School	Index No

545/2 CHEMISTRY Paper 2 July/August 2017 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES;

Section A consists of 10 structured questions. Answer all questions in this section.

Answers to these questions must be written in the spaces provided.

Section B consists of 4 semi – structured questions. Answer any two questions from this section.

Answers to section B must be written in the answer booklet/sheets provided and stapled at the back of the question paper.

Show all your working clearly in both sections.

Where necessary use;

[Fe = 56, C = 12, O = 16, H = 1, Molar gas volume at s.t.p = $22.4dm^3$]

					, L	or ex	amm	ersu	se onl	<u>y</u>				
1	2	3_	4	5	6	7	8	9	10	11	12	13	14	Total
- 1						7								

© WAKISSHA Joint Mock Examinations 2017

SECTION A (50 MARKS)

Answer all questions in this section.

1.	(a)		Ammonium chloride and Lead (II) nitrate behave differently on heating. Which one undergoes;											
			_	; rary change.		(½ marks)								
		(ii)	Perman	nent change:		(½ marks)								
	(b)	Weite				Law boated								
	(b)					omposes when heated								
						(11/ movke)								
	(c)					resultant solution dilute								
	(6)			d silver nitrate were		resultant solution dilute								
		(i)												
				•••••		(1mark)								
		(ii)	(ii) Write an ionic equation for the reaction that took place (1½ marks)											
2.	(a)	Distir		etween mass numbe		per. (01 mark)								
.,						**************************************								
	(b)	Comp	Complete the table below showing atoms of elements V, W, X and Y. (The											
	(-)	letters	s are not	the usual symbols	_	1000 000								
		Elen	nents	No. of neutrons	Mass number	Electronic configuration								
		37 V			* *	s = 0								
		13 W												
		::::X		12		2:8:1								
		;Y			19									
		1 -2	4 1	F 20		(04 marks)								
3.	(a)	What	is an O	xide?		(01 mark)								
			•••••											
				•••••										
			0											

(b)		the oxides Sulphur trioxide, Carbon monoxide, Aluminium of and Carbon dioxide. State the oxide(s) that can react with:	xide, Sodium
•	(i)	acids only;	(01 mark)
	(ii)	alkali only;	(01 mark)
	(iii)	both acid and alkali	(01 mark)
	(iv)	neither acid nor alkalis	(01 mark)
(a)		ine the term electropositivity	
Two	o rods A	A and B of different metals were placed in a solution containing he observations made were given below; A Solution containing ions of metal C No visible reaction Solid deposited	
•		140 Alsione remember	
(b)		ange the metals A, B and C in order of their electro positivity (least electro positive)	(01 ¹ / ₂ marks)
(c)	A r	ing made of iron can be protected by coating it with silver. Drathe setup of apparatus that can be used to coat an Iron ring with	aw a diagram a silver. (02 ¹ / ₂ marks)

).	P			A, contains 59%, sodium and the rest is Oxygen.	
	(a)	Calcula	ate the molecular formular of the compound given that the re	lative
				a mass of the compound is 78 (Na = 23, $O = 16$)	(3½ marks
			•••••		
		(b)	Write	an equation for the reaction between the compound A and wat	er:
		3.1			(1½ marks)
6.		Vege	table oi	l can be converted to a solid fat by the following equation.	
				il $\xrightarrow{\text{Y}}$ solid fat.	
		(a)	(i)	Name the process being illustrated	(01 mark)
			(ii)	Identify Y and state its role in the process	(02 marks)
	••				
		(b)	State	one industrial application of the process in a(i) above	(01 marks)
					••••••
		(0)	Vocat	table oil was boiled with squeeze as time land with squeeze	
		(c)		table oil was boiled with aqueous sodium hydroxide and a salt was the compound formed.	
					(01 mark)
7		(0)			
7.		(a)	(i)	niel cell is an example of a chemical cell. Identify the cathode	(01 mark)
			100 E		(or mark)
			(ii)	electrolyte at anode in the Daniel cell.	
					(01 mark)
		(b)	Write	equation for the reaction at each electrode	(02 montes)
		(-)			(02 marks)
			Callio	de;	
					•••••
				(2)	

		Ano	le;	
	(c)	State	one disadvantage of the cell.	(01 mark)
8.	(a)		e the method that can be used to prepare Lead (II) Sulphate	
••	(-)		ratory.	(01 marks)
	(b)	Writ	e the equation leading to the formation of Lead (II) Sulphate	in the
	()	labo	ratory.	(1½ marks)
	(c)	State	e what is observed when ammonia solution is added drop wis	e until in
		exce (i)	Zinc ions.	(1½ marks)
		(-)		
		(ii)	Lead (II) ions.	(01 marks)
9.	(a)	Cond	centrated sulphuric acid is not a suitable drying agent for amn	nonia.
		(i)	Give a reason for the observation above.	(2½ marks)
	•			
		(ii)	Write the equation to support your answer in a(i) above.	
	(b)		mmonia gas was passed over heated Lead (II) Oxide in a con	ibustion tube (01 mark)
		(i)	State what was observed.	
		(ii)	Write an equation for the reaction that took place.	
10.	4g of	an alloy	y of Copper and Zinc when reacted with excess hydrochloric	acid gave
			drogen gas measured at s.t.p. the alloy.	(01 mark)
	(a)	Ivanie		
				Turn Over
			© WAKISSHA Joint Mock Framinations 2017	5

	(b)	Write the equation for the reaction that took place.	(1½ marks)
	(c)	Calculate the mass of copper in the alloy.	(1½ marks)
	(-)		
	(q)		(01 marks)
		SECTION B (30 MARKS)	8.00
		Answer two questions in this section.	
11.	(a)	With the aid of a labeled diagram describe the structure of a diamond	crystal.
	7.0		(04 marks)
	(p)	Diamond was burnt in excess air to produce gas Y. (i) Identify gas Y.	701 - 12
		(i) Identify gas Y.(ii) Write the equation for the reaction that took place.	(01 mark) (1½ marks)
	· (c)	Gas Y was passed through sodium hydroxide solution for a long time	
		(i) State what was observed. Explain the observation	(2½ marks)
	(d)	Describe how sodium carbonate powder can be prepared on large sea	
			(6½ marks)
12.	(a)	Describe how a sample of nitrogen can be obtained from air.	(05 marks)
		(diagram not required)	
•	(b)	(i) Write the equation for the reaction between nitrogen and hydr	SATISTERIOS SANCE RECEV
		(ii) State the conditions for the reaction above.	(1½ marks) (01 mark)
	(c)	Starting with ammonia, describe how nitric acid can be prepared on	
	(-)	scale.	(5½ marks)
	(d)	Write the equation for the reaction between copper and;	
		(i) Dilute nitric acid.	(1½ marks)
		(ii) Concentrated nitric acid	(1½ marks)
3.	(a)	(i) Describe the process of preparation of ethanol from starch.	(4½ marks)
J.	27	(ii) Write the equation for the process in a(i) above.	$(1\frac{1}{2} \text{ marks})$

- Ethanol can be dehydrated using sulphuric acid to form compound P. (b) Name the class of the organic compound to which P belongs. (01 mark) (i) Write the general formula of the class of the compound to which P (ii) (01 mark) belongs. Name the reagent that can be used to identify P in the laboratory. (c) (i) (01 mark) State what is observed when P is treated with the reagent named in c (i) (ii) (01 mark) Polyethene is prepared by addition polymerization. (d) (01 mark) State what is meant by the term addition polymerization. (i) (01 mark) Name the monomer units in polyethene. (ii) Write the equation for the reaction leading to formation of polyethene. (iii) (01 mark) (01 mark) Give one disadvantage of polyethene. (i) (e) Suggest one way of overcoming the disadvantage mentioned (ii) (01 mark) in e(i) above. Define the following terms; 14. (a) (01 mark) Enthalpy of solution. (i) (01 mark) Enthalpy of neutralization. (ii) The table below shows heat changes obtained when seven portions of 50cm3 of (b) 2M sodium hydroxide solution were each placed in insulated plastic beakers and the temperature noted. Various quantities of hydrochloric acid all at the same temperature were added in each beaker and the temperature rise noted. 50 50 50 50 Volume of NaOH (cm3) 50 50 50 140 120 100 80 Volume of HCl (cm3) 40 60 20 5.6 5.6 5.6 4.5 3.4 2.2 Heat evolved (KJ) 1.1 Plot a graph of heat change against the volume of hydrochloric acid. (i) (41/2 marks) From the graph determine the volume of hydrochloric acid required to (ii) (01 mark)
 - completely neutralize 50cm3 of 2M sodium hydroxide.
 - Calculate The number of moles of sodium hydroxide contained in 50cm³ of the (c) (i) (2½ marks) . solution.
 - The concentration in moles per litre of the hydrochloric acid. (21/2 marks) (ii)
 - (02 marks) Determine the molar heat of neutralization for the reaction. (d)

Name	Signature
School.	Index No
545/2 CHEMISTRY	
Paper 2 July /August2015	

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES

- Section A consists of 10 structured questions. Answer all questions in this section.
 Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this section.

Answers to section B must be written in the answer booklet/sheets provided and stapled at the back of the question paper.

Show all your working clearly in both sections.
 Where necessary use;
 [Ba = 137, C = 12, O = 16, H = 1, S = 32, Na= 23, Molar gas volume at s.t.p = 22.4dm³]

For examiner's use only													
2	3	4	5	6	7	8	9	10	11	12	13	14	Total
	•												
	2	2 3	2 3 4	2 3 4 5	2 3 4 5 6	For ex 2 3 4 5 6 7	For examine 2 3 4 5 6 7 8	For examiner's u. 2 3 4 5 6 7 8 9	For examiner's use onl 2 3 4 5 6 7 8 9 10	For examiner's use only 2 3 4 5 6 7 8 9 10 11	For examiner's use only 2 3 4 5 6 7 8 9 10 11 12	2 2 4 5 6 7 8 0 10 11 12 13	2 2 4 5 6 7 8 0 10 11 12 13 14

SECTION A (50 MARKS)

Answer all questions in this section.

١,	Dilute	sulp	hurio acid was added to magnesium ribbon, a gas W was evolved	i
	(a)	<i>(i)</i>	Identify W	(¹/2 mark)
		(ii)	Write equation for the reaction leading to the formation of W.	(1½ mark)
	415	WIL		DOMESTIC OF MANAGEMENT
	(b)		en dry W was burnt in air and the vapour condensed, a colourless s formed.	i tiquia Q
		(i)	Name one compound that can be used to identify Q.	(1mark)
		ίŷ	tanno ono compound tian can de asca to identity Q.	
	8			
		(ii)		
			with liquid Q	(1 mark)
		(iii) Write equation for the reaction between Q and the compound n	
				(1mark)
2.	(a)	D	efine the term solubility of a salt.	(1mark)
		• •		
		••		
	(b)	T	he solubility of salt X is $65g/100g$ of water at 80° C and $42g/100g$	of water at
	(-7		0°C. Calculate the mass, of X that will crystallise by cooling 16g	of saturated
		sc	olution X from 80°C to 30°C.	$(2^{1}/_{2} \text{ marks})$
			##	
		••		
		.,		

	(c)	Wat chlo	ter from lake Katwe consists of a mixture of sodium carbonate oride.	and sodium
		(i)	State the method that can be used to separate the two salts.	(1 mark)
		(ii)	Hydrochloric acid was added to the mixture in (c) above. Write ionic equation for the reaction that took place.	(1 ¹ / ₂ marks)
3.	(a)		rbon dioxide can be prepared by reacting dilute hydrochloric aci	d with marble
		(i)	Write ionic equation for reaction leading to the formation of ca	arbon
		75	dioxide.	(1 ¹ / ₂ marks)
	(b)	Bur (i)	rning magnesium was lowered into a gas jar of carbon dioxide. State what was observed.	(1 marks)
		(ii)	Give a reason for your observation in b(i).	(1 mark)
		(iii)	Write equation for the reaction that took place.	(1½ marks)
				•••••
4.	(a)		n a dry mixture of hydrogen and nitrogen was passed over finely state two other conditions at	divided Iron,
		(1)	State two other conditions other than that mentioned in(a) that ar	e necessary
		-	for the formation of gas R.	(01 marks)
		<i>,</i> ,,,,,		•••••
		(ii)	Write equation for the reaction that took place in (a).	(1 ¹ / ₂ mark)
		9		
		£9 .		
	(b)	A gas	jar of R was inverted over a gas jar of hydrogen chloride.	
			State what was observed.	(01 mark)
		•		
		1		
		(ii) '	the equation for the reaction that took place.	(1 ¹ / ₂ marks)
		Z. Carlo		

5.	(a)		ydro carbon W of molecular mass 58 contains 82.8% carbon rogen. Calculate;	
		(i)	Emperical formular of W.	(02 marks)
		(ii)	Molecular formular of W.	(01 mark)
				•••••
	(b)		drocarbon Y has C ₄ H ₈ as its molecular formular.	
		(i)	Write down the structure of Y.	(01 mark)
		(ii)	State the structural difference between Y and W.	(01 mark)
	270-47			
	••			
6.				3.0
			Test tube X	4 ×
			Test tube Y	
				odium hydroxide
		(Lead Carbonate	
		18		
	(a) (i) S u	State what was observed when the content of test tube Y was sometil no further change and then left to cool.	strongly heated (01 mark)
		•		
	,	, .,		
			587	The second secon

		(ii)	Write equation for the reaction that took place in test tube Y.	$(1^{1}/_{2} \text{ marks})$
	(b)	(i)	State what was observed when the gaseous product from test to bubbled through sodium hydroxide for a long time.	
	¥:	×.		
		(ii)	Write equation(s) for the reaction that took place.	(1 ¹ / ₂ marks)
7.	(a)	De:	fine the term Electrolyte.	(1 mark)
n	(b)	 Na (i)	me one substances that uses the following for conducting electric Free electrons	ity. (¹/2 mark)
S		(ii)	Ions	
	(c)		ure 1. Shows an electrolyte cell, study it and answer the question	s below;
			Copper(ll) Sulphate solution	
		Star (i)	te what was observed at Zinc Rod	(1 mark)
			© WAKISSHA Joint Mock Examinations 2015	Turn Over

	. (ii) Copper Rod	(1 mark
		(iii) Briefly explain your observation in; a (i) and (ii)	(1 mark)
8.	7.5g CH4	of methane was completely burnt in air according to the following $(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O_{(f)}$	equation.
			ΔH = -890kjmol-
	(a)	Calculate the volume of earbon dioxide formed at s.t.p	(2 marks)
	(b)	The heat evolved	(2 marks)
			•••••
9.	(a)	Barium sulphate can be prepared by reacting sodium sulphate and	
		(i) State the method of preparation being used.	(1 mark)
	.,	(ii) Write ionic equation for the reaction that takes place when the	e two
		compounds are reacted.	(¹ / ₂ mark)
	(b)	sulphate and the mixture filtered. Calculate the mass of the precipitate formed. Na = 23 , S = 32 , O =	(3 marks) $= 16 Ra = 137$
		· · · · · · · · · · · · · · · · · · ·	
10			
10.	Imp (a)	 (i) Name the process by which glucose in the presence of yeast to alcohol. 	xed with yeast. can be converted
		· · · · · · · · · · · · · · · · · · ·	(1 mark)
	£	***************************************	

		(11)	State the role of yeast.	(1 mark)
		(iii)	Write equation for the reaction leading to the formation of the alco	ohol, (1 mark)
	(b)	Stat (i)		(1 mark)
	*	(ii)	5 al 97	(1 mark)
			SECTION B 30 MARKS	
11.	(a		ing a diagram, describe the laboratory preparation of dry chlorine by idation of potassium manganite (VII)	(5 marks)
	(t	(i) (ii)		(1 mark) above. (4marks)
-	(c) Ch	alorine gas was bubbled through water and the resultant solution exp	osed to
		bri	ght sunlight in an inverted tube.	
		(i)	State what was observed	(1 mark)
		(ii)	Write equation for the reaction that took place when the solution v to sunlight.	vas exposed (1 ¹ / ₂ marks)
	(d)) A	gas jar of hydrogen sulphide was inverted over a gas jar of chlorine.	166 (1
		(i)	State what was observed	(1mark)
		(ii)	Write equation for the reaction that took place.	(1 ¹ / ₂ marks)
12.	(a)	(i)	Describe how pure sample of sodium carbonate can be obtained in laboratory starting with dilute hydrochloric acid.	n the
			(your answer should include equations for the reaction)	(5 marks)
				4

- (b) A concentrated solution of sodium carbonate was added to water containing calcium ions.
 - (i) State what was observed.
 - (ii) Write equation for the reaction that took place.

(31/2 marks)

- (c) 15.0g of a mixture of sodium carbonate and sodium sulphate was added to distilled water in a volumetric flask and the solution made up to 1000cm³ with distilled water. 25cm³ of this solution required 12.5cm³ of 0.2M sulphuric acid for complete reaction.
 - (i) Write equation for the reaction that took place.

 $(1^{1}/_{2} \text{ marks})$

(ii) Calculate the mass of sodium carbonate in the mixture.

(31/2 marks)

(iii) Find the percentage of sodium carbonate in the mixture.

(1¹/₂ marks)

13. (a) What is meant by the term rate of reaction

(1 mark)

- (b) Briefly describe an experiment that can be carried out to determine the effect of concentration on the rate of reaction between sodium thiosulphate and dilute hydrochloric acid. (5marks)
- (c) In order to determine the rate of reaction between magnesium and 0.1M hydrochloric acid. The acid was added to magnesium powder.
 - (i) Sketch a graph of volume of gas produced against time for the above reaction and label it X. (2 marks)
 - (ii) Using the same axes sketch a graph of volume against time if magnesium ribbon is used instead of magnesium power and label it Y. (1 marks)
 - (iii) Explain the difference between the two curves X and Y. (2 marks)
- (d) Magnesium ribbon was put in a test tube containing 120cm³ of 5.2m nitric acid until the evolution of the gas stopped. Calculate the mass of magnesium that reacted with the acid. (4 marks)
- 14. Explain each of the following observations;
 - (a) A solution of Barium chloride reacts with sodium sulphate solution to give a white precipitate insoluble in dilute hydrochloric acid, where as a solution of Barium chloride reacts with sodium sulphite solution to give a white precipitate that dissolves in dilute hydrochloric.

 (4¹/₂marks)
 - (b) At low temperature (10°C) nitrogen does not react with magnesium. However it reacts with Burning magnesium to form a white solid which dissolves in water evolving a colourless alkaline gas. (5marks)
 - (c) When sodium hydroxide solution is added to a solution containing zinc sulphate a white precipitate soluble forming a colourles solution is formed. (3½ marks)
 - (d) Dilute sulphuric acid conducts electricity but concentrated sulphuric acid does not.
 (2 marks)

END

Name	. Signature
School	Index No
545/2 CHEMISTRY Paper 2	
Paper 2 July /August2014	=

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES

2 hours

- Section A consists of 10 structured questions. Answer all questions in this section. Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this section.

Answers to section B must be written in the answer booklet/sheets provided and stapled at the back of the question paper.

Show all your working clearly in both sections. Where necessary use;

Where necessary use,

$$[1F = 96500C, C = 12, H = 1, O = 16, N = 14, Ca = 40, S = 32, K = 39]$$

Molar gas volume at s.t.p = $22.4dm^3$]

2 2 4 5 6 7 9 0 10 11 12 13 1									or ex						
	4 Tota	14	13	12	11	10	9	8	7	6	5	4	3	2	

SECTION A (50 MARKS)

Answer all questions in this section.

1.	Lanthe (a)	rge scale preparation of nitrogen is done by passing air through solution An over heated metal Z. Identify	A and
	, ,	(i) solution A	(½ mark)
		(ii) metal Z	(½ mark)
	(b)	State the role of solution A and metal Z in the above process.	
		(i) Solution A	(½ mark)
		(ii) Metal Z	(½ mark)
	(c)	Write equation of the reaction that took place when air was passed	
12		(i) through solution A	(½ mark)
		(ii) Over heated metal Z	(½ mark,
2.	a)	Steam was passed over heated iron fillings in a combustion tube.	
		i) State what was observed.	(1 mark)
		ii) Write equation for the reaction that took place	(1½ marks)
2	b)	The gaseous product in a (i) was dried and burnt in excess air to form su i) Name one compound that can be used to identify Q.	bstance Q. (½ mark
		ii) State what is observed when Q is treated with the compound named it	n b (i) (1 mark
		iii) Write equation for the reaction that took place in b(ii)	(1 mark
•	_\	Define the term relative atomic mass.	No. 1 Line School Services
3.	a)	Define the term relative atomic mass.	(1 mark
			. 4
			3.9
	-	© WAKISSHA Joint Mock Examinations 2014	2

1	b)	An element W has mass number 27 and 14 neutrons. i) Write down the electronic configuration of W.	(1 mark
		ii) W combines with oxygen to form compound R, write down the form state the type of bond in R. Formula	nula of R and (½ mark)
		Type of bond	(½ mark)
	c)	- 1300 ABS - 146 - 150 ABS	was added (1 mark)
0		ii) Write ionic equation to explain the observation made in c (i) above.	(1½ mark)
4.	a)	Water was dropped onto Calcium oxide placed on a petri dish. i) State what was observed	(1 mark)
		ii) Write equation for the reaction that took place	(1½ mark)
	b)	To the resultant solid was added ammonium chloride and the mixture hear	ted. (1½ mark)
J	8	ii) State how the gascous product in b(i) above can be identified.	(1 mark)
5.	1.5g	g of a hydro carbon M consists of 1.2g of carbon.	
	a)	Calculate the empirical formula of M.	(2 marks)
			W. No.

	b)	pre	25g of hydro carbon M occupies a volume of 100cm ³ at room temessure (1 mole occupies 24000cm ³ at rtp).	perature and
		1)	Calculate the relative molecular mass of M.	(1½ mark)
	-51			
		ii)	Determine the molecular formula of M	(1½ mark)
		,		
,	0	•		
6.	Sul	nodr Inni	monoxide can be prepared by dehydration of substance W using coric acid.	ncentrated
			Name substance W.	(½ mark)
		П	Write equation for the reaction leading to the formation of carbon r	nonoxide (1½ mark)
4			· · · · · · · · · · · · · · · · · · ·	,
	b)	C	arbon monoxide was passed over heated iron (iii) oxide	
	6		Write equation for the reaction that took place.	(1½ mark)

	32	ii)	State how the gaseous product in b (i) above can be identified.	(1½ mark)
			,	
	34		***************************************	
		ъ-	fine the term heat of combustion.	
7.	a)		; 3	(1 mark)
		* * *		
		• • • •		
				••••••
	b)		nanol burns in oxygen according to the following equation. $_{3}CH_{2}OH_{(I)} + 3O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_{2}O_{(I)}$	
			$= \text{H}\Delta$	= -154KJmol ⁻¹
			ulate evolved when 11.5g of ethanol reacted with oxygen at s.t.p	(11/
	i)	ן נין		(1½ marks)
		••		
		••		

1	ii) The volume of carbon dioxide produced at stp ($C = 12$, $H = 1$, $O = 16$)
1	(2
	(2 marks)

8.	Electrolysis of 1M sulphuric acid was carried out using Zinc cathode and copper anode.
	a) State what was observed at the anode. (½ mark)

	b) Write equation for the reaction that took place at the
	i) Cathode
	·
	(1½ marks)
C	ii) Anode
	(1½ marks)
	c) Write an equation for the overall cell reaction. (1½ marks)
9.	Hydrogen is produced in the laboratory according to the following equation.
	$2HCl_{(aq)} + Zn_{(s)} \longrightarrow ZnCl_{2(aq)} + H_{2(g)}$ a) i) State two ways in which the rate of production of hydrogen can be increased.
	(2 marks)
0	ii) Sketch a graph to show how the rate of production of hydrogen varies with time. (1½ marks)
	*

	b)	Calculate the volume of hydrogen produced at s.t.p when 25cm of 2	M hydrochloric
	8	acid was completely reacted with Zinc granules.	(2
		(Imole of gas at s.t.p occupies 22400cm ³)	(2 marks
10	- \		
10.	. a)	i) Name one reagent that can be used to identify iodide ions in the la	(½ mark
		ii) State what is observed when the solution containing iodide ions is reagent names in a(i) above.	treated with the (½ mark)
	b)	Write equation for the reaction that took place in a (ii)	(1½ marks)
	c)	Chlorine gas was bubbled through a solution of Sodium iodide	
	19	i) State what was observed	(½ mark)

		ii) Write equation for the reaction that took place.	(1½ marks)
		*	
	.•	SECTION B (30 MARKS)	
		Any two questions in this section.	
11.	en	ucose $C_6H_{12}O_6$ can be converted into ethanol by a catalytic reaction cause symes produced by yeast. Name	ed by the
	a)	i) the reaction in which yeast converts glucose into ethanol.	(1 mark)
		ii) the enzyme produced by yeast during the above reaction.	(1mark)
		iii) write equation for the reaction leading to the formation of ethanol	
		by the process named in a(i).	(1½ marks)
		by the process mines in acry.	.50
	b)	When Ethanol was strongly heated together with concentrated sulphuric	acid, gas W
	27	was formed.	-
		i) Identify gas W	(1mark)
	i	ii) Write equation for the reaction leading to the formation of gas W.	(3 marks)
		© WAKISSHA Joint Mock Examinations 2014	6

Name one reagent that can be used to identify W in the laboratory. c) i) (6 marks) ii) State what is observed when the reagent is treated with Gas W. (1mark) iii) Write equation for the reaction that took place in c(ii) (1½ marks) d) W when treated with high pressure and heat, in the presence of a catalyst reacts to form a plastic P with a high molecular mass. (1 mark) Identify P i) (1½ marks) ii) Write equation leading to the formation of P from W. (1 mark) iii) State one domestic use of P. (2 marks) e) Differentiate between thermosetting and thermosoftening plastics. 12. a) Describe how a pure dry sample of Sulphur dioxide can be prepared in the laboratory (4 marks) (Diagram not required) b) Describe how Sulphur dioxide can be used to obtain pure sulphuric acid. (Your answers should include equations for the reactions). (7 marks) c) Concentrated sulphuric acid was added to a beaker containing crystals of sucrose (1 mark) state what was observed (1½ marks) ii) write equation for the reaction that took place (11/2 marks) d) State how sulphate ions can be tested for in the laboratory 13. Explain the following observations. a) Diamond and graphite are both allotropes of carbon. However, diamond is very hard while graphite is soft. b) Potassium chloride conducts electricity in both fused state and in aqueous solution whereas hydrogen chloride conducts electricity only in aqueous solution and not in gaseous state. c) Aluminum chloride solution is acidic but when evaporated to dryness and the residue dissolved in water, the resultant solution is alkalinic. d) Addition of sodium hydroxide solution to a solution of Zinc nitrate gives a white precipitate which is soluble in excess forming a colourless solution. 14. Sodium is extracted industrially by the down's process. a) Briefly describe the process leading to the extraction of sodium. (5 marks) (diagram not required)

- b) Sodium metal was dropped into a trough of water
 - i) state what was observed

(11/2 marks)

ii) write equation for the reaction that took place

(11/2 marks)

- c) The resultant solution in (b) was Separately treated with solutions of aluminium and lead ions.
 - i) state what was observed.

(1mark)

ii) write ionic equation(s) to explain your observations in C(i)

(3marks)

d) i) Name one reagent that can be used to differentiate between lead and aluminium ions.

(1mark)

ii) State what is observed when the named reagent is separately treated with the solutions of lead and aluminium ions. (2 marks)

END

Name	Signature
School	Index No

545/2 CHEMISTRY Paper 2 July /August2013 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES

- Section A consists of 10 structured questions. Answer all questions in this section.
 Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this section.

Answers to section B must be written in the answer booklet/sheets and stapled at the back of the question paper.

Show all your working clearly in both sections.
 Where necessary use;
 [1F = 96500C, C = 12, H = 1, O = 16, N = 14, Ca = 40, S = 32, K = 39
 Molar gas volume at s.t.p = 22.4dm³]

				,		For ex	amine	er's us	e only					
1	2	_3_	4	5	6	7	8	9	10	11	12	13	14	Total
1														

SECTION A (50 MARKS)

Answer all questions in this section

1.	(a)	Stat	e one difference between compounds and mixtures.	(1mari
			de	
	(b)	Stat i)	e whether the following substances are elements, compounds of Diamond	(01 mark)
	#	ii)	Common salt	(01 mark)
	3			
		iii)	Duralumin	(01 mark)
	85			
	(c)	Co	pper and Zinc were mixed to form a solid W	
	*	i)	Name the solid W formed	$\binom{1}{2}$ mark)
		ii)	State one use of solid W	(¹ / ₂ mark)
			-	
2.	An	elem	ent X has an atom whose symbol is $^{24}_{12}X$	
<i>-</i> 1	(a)		Draw the electronic structure of X	(01mark)
				•••••
		ii)		(01mark)
	1 0000 97			
	(b)	The	e oxide of X was dissolved in water and the aqueous solution tenus solution.	sted with
		i)	State what was observed	$\binom{1}{2}$ mark)
		-)		
		ii)	Write equation for the reaction between the oxide of X and wa	iter.
				$(I^{I}/_{2} mark)$
	15			
			CMC #2	

	(0)	bla	ten a piece of X was ignited and lowered into a gas jar of earlick particles were observed.	on dioxide,
		i)	Write equation for the reaction that took place.	$(1^l/_2 mark)$
3	(0)	0	tygen gas can be prepared in the laboratory by dissolving a sol	120
3. (a)	(a)	Y	id compound	
		i)	Name compound Y.	(01 mark)
		ii)	Write equation leading to the formation of oxygen from com	pound Y. $(1^{I}/_{2} mark)$
	(b)	Th	ne resultant solution in (a) was added to Iron (II) Sulphate solut	
		i)	State what was observed.	(01 mark)
		ii)	The second course of the secon	8
4.	An	orga	mic compound P whose molecular mass is 46 contains 54.80%	•
.,	32.9	00%	oxygen and 12.30% hydrogen by mass. (C=12, H=1,O=16)	
	(a)	Ca	Iculate	
		i)	The Empirical formula of P.	(02 marks)
		::\	Molecular formula of P.	
		ii)	en e	(01 mark)
			*	•••••••
	(b)	D ce	an react with concentrated sulphuric acid to form gas Q.	***************************************
	(0)	i)	State one other condition necessary for the formation of gas	1
		1)	otate one other condition necessary for the formation of gas t	∠. (¹/₂ mark)
				55 - 000 T 10 1 (AT 0000 10 4 4 5)
			© WAKISSHA Joint Mock Examinations 2013	3

	ii)	Write equation leading to the formation of gas Q.	(01 mar)
	(c) i)	Name one reagent which can be used to identify gas	Q in the laboratory.
		·	
	ii)	State what would be observed when gas Q is treated	with the reagent you
		have named in C(i).	(01 mark)
		·	
			93
5.		magnesium ribbon was ignited and burnt in air, two pro-	
		rmed. Y dissolved in water with evolution of a colourle	ess alkaline gas W.
	(a) Ider	tify the substances	· · · · · · · · · · · · · · · · · · ·
	i)	Z	(1/2 mark)
	ii)	Y	7.42
	11)		$('/_2 mark)$
.,	iii)	Gas W	(¹ / ₂ mark)
¥/.	(b) Writ	e equation leading to the formation of gas W	(1 ¹ / ₂ mark)
	(c) Gas	W was passed over heated copper (II) oxide.	
	i)	Write equation for the reaction that took place.	$(1^1/_2 mark)$
6.	(a) Sulph	turic acid is a strong dibasic acid.	
	i)	State what is meant by the term dibasic acid.	(01 mark)
	Í		

ii) Write equation to show how sulphuric acid ionizes in water.	$(1^1/2 mark)$
(b) Sulphuric acid reacts with ammonia according to the following equa	ation.
$H_2SO_{4(aq)} + 2NH_{3(g)} \longrightarrow (NH_4)_2SO_{4(S)}$	
If 20.0 cm ³ of a 2M solution of sulphuric acid were reacted with an	nmonia,
calculate the mass of the solid formed.	$(2^{1}/_{2} mark)$
	••
Carbon dioxide gas was passed over red hot charcoal as shown in figur	re 1. The
excess carbon dioxide was passed through sodium hydroxide solution.	
Dry Combustion tube	
Carbon dioxide	-Gas X
Charcoal heat	
wash	
bottle	
Fig. 1 Sodium hydroxide	
solution solution	
(a) Write equation for the reaction.	
 i) between charcoal and carbon dioxide gas. 	$(1^1/_2 mark)$
•	

that took place in the wash bottle.

 $(1^l/_2 mark)$

ii)

(p	i) Gas .	X was collected and passed over heated from (III) oxide Name gas X.	$(^{1}/_{2} mark)$
	ii)	Write equation for the reaction that took place between Iron and gas X.	(III) oxide $(1^{1}/_{2} mark)$
8. (a		mple of hydrogen sulphide gas can be prepared in the laborato	ry using
	dilut	e hydrochloric acid and solid Q.	
	i)	Identify solid Q.	$\binom{1}{2}$ mark)
	ii)	Write equation for the reaction leading and Control of	
	11)	Write equation for the reaction leading to the formation of hy	* 227
		sulphide from solid Q.	$(1^1/_2 mark)$
(b) A ga	s jar of hydrogen sulphide was inverted over a gas jar of chlori	ne gas
	i)	State what was observed.	(01 mark)
	,		
•	ii)	Write equation for the reaction that took place.	$(1^{1}/_{2} mark)$
			•••••
9. (a)) State	what is meant by the term enthalpy of solution.	(01 mark)
(b) 1.10g	g of calcium chloride was dissolved in 50cm ³ of water and the erature of water increased from 20.9°c to 24.2°c	
	i)	Give a reason why there was a temperature rise in the water.	(01 mark)
	3		•••••••
	,		
	ii) (Calculate the molar heat of solution of calcium chloride (Ca =	40, CI =
		35.5 density of water 1g/cm ³ , heat capacity of water = 4.2 J/g	/°c).
			$(2^l/_2 mark)$

			11111111111	шшш	111111111111	11111111111	
			шиши		шини	11111111111	111111111111111111111111111111111111111
			пинии		manna	11111111111	
to. A solut	lon containing calcium ion	a was a	ixed ar	anda bi	en witt	i a knov	wn volume
	solution and solid M was						
(a) l)	Name solid M that was fo						(¹ /) mark)
						mann	
11)	Write ionic equation for t	he react	tion lead	ding to	the for	mation	01 M. (1 ¹ /2 mark)
							(1 /2////////
						шини	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(b) Nar	ne one;						(0.1
i)	Physical process.						(01 mark)
			1.5.5.5.5.5.5.5.5.5.5.5				
ii)	Compound that can be us mixture.	ed to st	op the f	ormati	on of s	olid M	in the (¹ / ₂ mark)
	ite equation for the reaction	that wo	uld tak	e place	when t	he mix	ture is
				o pinoo			(11/2 mark)
tret	ited with the compound nam	ica in o	(11).				4
		,,,,,,,,,,,,				,,,,,,,,,,	
*****			20.84.	onnon		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	SECTIO)N B: (30 MA	ICICS)			
Ans	wer any two questions from	i this se	ctlon.				
	litional questions answered			rked.			
	efly describe how a dry sam he laboratory.	ple of p	ootassiu	m nitra	ite crys	tals car	i be prepare (06 marks
,	table below shows the vari perature.	ation o	f solubi	lity of	potassi	um nitr	ate with
	Solubility/100g of water	22	32	42	55	70	90
	Temperature °C	12	20	28	36	44	52
		1			SOLD TRANSPORTED THE PROPERTY OF	-	

			i)	Plot a graph of solubility of potassium nitrate against temperatu	
		721	116.		$(4^l/_2 mark)$
	(3)	From i)	m the graph determine; the solubility of potassium nitrate at 30°C.	(01 mark)
			ii)	the mass of potassium nitrate precipitated when the solution is	*
				cooled from 50°C to 30°C.	(01 mark)
•	(d)	Cal As:	culate the concentration of potassium nitrate in moles per dm ³ at suming the density of water is 1g/cm ³ .	25° C ($2^{l}/_{2}mark$)
	12.	a)	Wri	ite equation for the reaction between ammonia and;	
		31	i)	hydrogen chloride gas.	$(1^1/_2 mark)$
			ii)	aqueous solution of lead (II) nitrate.	$(1^{1}/_{2}mark)$
	ĵ	h)	20210	efly describe how nitric acid can be manufactured from ammonia	* ***
		٠,		= 39, $N = 14$, $O = 6$) (Your answer should include equations of re	
			(12	5), 11 11, 0 0) (x our miswer should mende equations of 1	(7 ¹ /₂mark)
		c)	Stat	te what would be observed when;	*
			i)	Copper (II) nitrate,	(01 mark)
			ii)	Silver nitrate,	(¹ / ₂ mark)
	3	d)	Wri	are strongly heated. ite equation(s) of reaction(s) that would take place in c (i) and (ii)	above. (03 marks)
	13.	(a)	(i)	State what is meant by the term electrolysis.	(01 mark)
	•		(ii)	State two factors that can determine the product formed at the electrodes during electrolysis.	(02 marks)
	((b)		efly describe how chlorine gas can be produced by electrolysis of centrated sodium chloride.	(5 ¹ /2mark)
	(-	lain why moist chlorine bleaches the colour of dyes where as dry s not.	chlorine (03 marks)
	(w a labeled diagram of a setup of apparatus that can be used to p (II) chloride in the laboratory.	repare (3 ¹ / ₂ mark)
	14.	22 (2	i)	wage is a mixture of effluent and sludge. State the difference between effluent and sludge. State one use of sludge.	(02 marks) (01 mark)
)	(b)	i) ii)	Briefly describe the processes involved in water purification. State how water can be detected in the laboratory.	(6 marks) (1 ¹ / ₂ mark)
		(c)	St	ate what would be observed and write equation for the reaction	that
			WOI	uld occur when;	
			i)	a piece of sodium metal is lowered into a trough of water.	(2 ¹ / ₂ mark)
			ii)	steam is passed over heated iron fillings.	(02 marks)

Name	Signature
School	Index No

545/2 CHEMISTRY Paper 2 July /August 2011 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

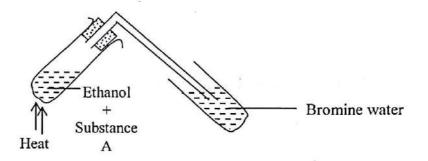
Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES

- 'Section A consists of 10 structured questions. Answer all questions in this section.
- Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this section.
- Answers to section B must be written on the answer sheet/booklet and stapled at the back of the question paper.
- · Show all your working clearly in both sections.

[1F = 96500 C, C = 12, H = 1, O = 16, Na = 23, Ca = 40, Molar gas volume at s.t.p = 22.4 dm³]


:	2	3	4	_ 5	6	_ 7	8	9	10	11	12	13	14	Total

© WAKISSHA Joint Mock Examinations 2011

SECTION A (50 marks)

Answer all questions in this section.

A mixture of ethanol and a substance A was heated as shown in the diagram below.
 A colourless gas B was evolved.

	a)	i)	Identify substances A and B	(1 mark)
		ii)	Write an equation for the reaction between ethanol and	
				(1½ mark)
•••••				••••••
	b)	i)	State what was observed in the test tube containing bro	omine water.
				(1 mark)
		∙ii)	Write an equation for the reaction in b (i) above	(1.17
		•••••		

	Ammonia was mixed with oxygen and the mixture passed over heated platinum. A colourless gas X was evolved. The mixture was cooled forming a									
	reddish brown gas Y. Y dissolves in water forming a yellow liquid.									
	a)	i)	Identify X, Y and the yellow liquid	1½ mark)						
	X									
	Y									
	Yello	w liquio	1							
		ii)		½ mark)						
••••	b)		all amount of the pale yellow liquid was added to a beaker conta							
		distil	led water. To the resultant mixture was added solid sodium carbo	onate.						
		i)		½ mark)						
		ii)	Write an equation for the reaction that took place. (1	½ mark)						
			······································							
•	The	structur	e of an atom of element Z is $^{25}_{12}Z$.							
	a)	State	p and the second							
		i)	the number of protons and neutrons in an atom of Z.							
		Neutr	rons	(½ mark)						
		Proto	ns	(½ mark)						
		ii)	the group of the Periodic Table to which Z belongs	(1 mark)						

b) Chlorine gas was passed over heated Z. State what was observed (1/2 mark) ii) Write an equation for the reaction between Z and Chlorine $(1\frac{1}{2} \text{ mark})$ iii) The product of the reaction between Z and Chlorine was dissolved in water. State whether the resultant solution is neutral, acidic or alkaline. The variation of mass of reactants with time when calcium carbonate is reacted with 4. dilute hydrochloric acid is shown in the figure. Mass of reactants Time If B is for the reaction at 30°C, which curve would be obtained if the reaction is a) carried out at. 25°C (½ mark) i) 45°C (½ mark) ii)

......

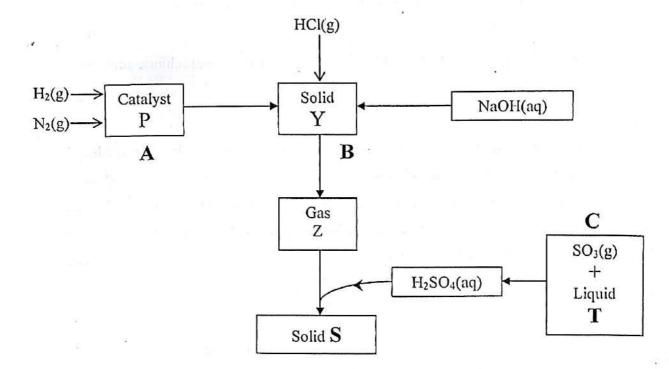
Explain why the curves meet at point X.

b)

(c)	i) How can the	e decrease in mass of reactants be	increased?	(2 marks)
		ii) If 1.0g of c	alcium carbonate reacted complet	ely with 20 cm ³ of	
	•••••				
	Com	plete the table below			(3 marks)
		Mixture	Method of separation	Principle behind separation	method of
	a)	Ethanol and Water			
	b)	Ink			
				i	
			heated, a colourless liquid which		
			I. A colourless gas which turns		
			olved and a reddish brown residu		norme gas is
			Q in water the solution turns to	yellow.	
	a) Q.	Identify the colou	riess gas, Q and S		(½ mark)
	S				(½ mark)
					Turn
		© WA	KISSHA Joint Mock Examinations 201	1	

	b)	Name i)	The cation in the yellow solution	(1mark)
		ii)	The reagent that can be used to confirm the anion in Q.	(1mark)
	c)	Write b (ii)	•	eagent in ½ mark)
•••••				
7.	Wate		lded to sodium peroxide powder.	
	a)		what was observed	(1mark)
*****	••••••	••••••		
•••••			······································	
.,	b)	i)	No.	½ mark)
		•••••		
		ii)	State what would be observed if a litmus paper is dropped into the	
				(1 mark)

	•••••			
	c)	One	drop of the resultant solution was added to an aqueous solution of le	ad(II)
		mtra	ic.	
		i)	State what was observed.	(½ mark)
		•••••		••••••
		•••••••		


© WAKISSHA Joint Mock Examinations 2011

		ii)	Write an equation for the reaction	(1 mark)
••••				
8.	An e	lectric o	current was passed through sodium chloride solution using um cathode. State what was observed at each electrode	
		Cath	ode	(½ mark)
		Ano	de	(½ mark)
		ii)	What is the volume ratio of the products?	(½ mark)
••••				•••••
	b)	1)	e an equation for the reaction if any at the anode	(1mark)
		ii)	between the product at the anode and potassium bromide	
				(1 ½ mark)
			······································	
*****	c)		Solve explain why the anodo must be seed to the	
	92.5	2	fly explain why the anode must be: made of graphite and no	ot platinum (1 mark)
••••	••••••			ST 5.
9.	A hyd	drocarb	on Y consists of 82.76% by mass of carbon.	
	a)	i)	Determine the empirical formula of Y	(3 marks)
		•••••		
		••••••		
		••••••		
			© WAKISSHA Joint Mock Examinations 2011	Turn Ove

		ii)	0.58 g of Y occupies 240 cm ³ at room temperature. molecular formula of Y. [Molar gas volume at room dm ³]	(3 mark:
			•••••••••••••••••••••••••••••••••••••••	
	c)	is giv	pound Z has molecular formula C_4H_{10} but a different street to compound Y and Z?	(/2 222/
10.	State a)	what w	yould be observed and write an equation when carbon die bbled into sodium hydroxide solution for a long time.	oxide gas (2 marks)
			······································	
			¥	
			3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	b)	is bul litmu	bbled into 2 cm ³ of distilled water and to the resultant so	(2 marks)
				
	•••••			

• • • • • •				

SECTION B (30 marks)

- 11. a) Describe how you would prepare zinc sulphate crystals in the laboratory using zinc granules. Write an equation for the reaction that takes place. (8 ½ mark)
 - b) The crystals in a) were dissolved in water to form an aqueous solution. The solution was divided into two portions. To the first portion was added ammonia solution drop wise until in excess.
 - i) State what was observed (1½ mark)
 - ii) Write equation(s) for the reaction(s) that took place. (11/2 mark)
 - c) Carbon dioxide gas was bubbled into the second portion.
 - i) State what was observed (1 mark)
 - ii) Write an equation for the reaction that took place (1½ mark)
 - d) How can an aqueous solution containing zinc sulphate and zinc nitrate be separated. (1 mark)
 - 12. The figure below summarizes a number of chemical processes. Study it and use it to answer questions that follow.

a)	i)	Identify catalyst P	(1 mark)				
	ii)	Identify solids $f Y$ and $f S$	(2 marks)				
	iii)	Write the conditions for optimum yield at ${f A}$	(2 marks)				
b)	Write	equations for the reactions leading to					
	i)	Gas Z	(1½ mark)				
	ii)	Solid S	(1½ mark)				
c)	i)	Identify liquid T	(1mark)				
	ii)	Write an equation for the reaction in C	(1½ mark)				
- 8	iii)	State one use of ${f S}$	(1mark)				
d)	S was	was dissolved in water to form an aqueous solution. The resultant solution was					
		ed into two portions					
	i)	Blue litmus paper was dipped into the first portion. State what	was				
		observed.	(½ mark)				
	ii)	A few drops of lead(II) nitrate solution were added to the seco					
		State what was observed and write an ionic equation for the re					
		took place.	(2 marks)				
	iii)	Explain why in the test for the anion in ${f S}$ dilute hydrochloric a	500				
		added.	(1 mark)				
a)	Descri	be with the aid of a diagram how the molar heat of combustion	6 1				
		determined in the laboratory.					
b)		of a solution containing 2.65 g of sodium carbonate in 250 cm ³	(9 marks)				
-)	require	ed 20 cm ³ of a monobasic acid for complete neutralization. Dete	of solution				
		concentration of the acid.					
	1110101		(6 marks)				

13.

14. a) Explain the following observations

- i) When silver nitrate solution is added to an aqueous solution of hydrogen chloride gas, a white precipitate is formed but there is observable change when silver nitrate is added to a solution of hydrogen chloride in methyl benzene. (3 marks)
- ii) 2M hydrochloric acid reacts faster with calcium carbonate powder than marble chips. (3 marks)
- b) Iron can be extracted from haematite in a blast furnace.
 - i) Write the chemical formula of haematite (1 mark)
 - ii) Name any other two ores from which iron can be extracted. (1 mark)
 - iii) Write an equation for the reaction leading to formation of iron in the blast furnace. (1½ mark)
 - iv) Name the major impurity in haematite (1½ mark)
 - v) Explain how limestone removes earthy impurities from the ore. (4 marks)
 - vi) Name a metal that is purified by electrolysis (1mark)

END

Name			 	Signature.	 	
School			 	Index No	 	
				3901		
545/2 CHEMISTRY	1000					
Paper 2		40				
July /August 2010						
2 hours				*		

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

Instructions to Candidates

- Section A consists of 10 structured questions. Attempt all questions in this section.
- Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Attempt any two questions from this section.
- . Answers must be written on the answer sheet/booklet and stapled at the back of the question paper.
- Show all your working clearly in both sections.

[1F = 96500C, C = 12, H = 1 O = 16, molar gas volume at s.t.p = 22.4dm³]

	J.					For	exam	iner's	use or	ıly				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
							14							
								1					100.00	

SECTION A (50 marks)

Answer all questions in this section.

1	Below is a section of the Periodic Tabl	e. The symbols used are not the usual syn	nbols.
---	---	---	--------

_I -	II	III		-	IV	V	VI	VII
1			*					
2	X	Y	242					Z
3								

a) Write the electronic co	onfiguration of
----------------------------	-----------------

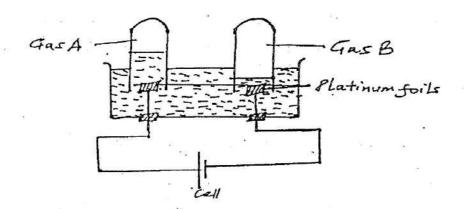
	# # # # # # # # # # # # # # # # # #	(1 o-lc)
i)	X	(1 mark)

		5	(1 morle)
11	Z		(1 mark)

b)	Write	

i)	an equation for the reaction between X and Z.	(1 ½ mark)

•=>/				
	ii)	the formula of the sulphate of Y.	· (4V	(1 mark)


		10
*******************	***************************************	
3		

namen and all			
c) ·	Comment on the size of atoms of elements X, Y and Z	· '	(1 mark)

2. Complete the table below. (4 marks)

Mixture	Method of separation	Principle behind method of separation
Water and ethanol		
Ink		
		The state of the s

3. A current of 0.2A was passed for 60 minutes through dilute sulpheric acid using the set up below.

	a) .	i) 	Identify gas A.	
			Write an equation of the reaction leading to formation of gas B	(1 ½ mark)
	b)	Cal	culate the number of moles of gas A evolved.	(2 ½ mark)
	•••••		ow solid M dissolves in water with evolution of a colourless gas that re-li	
+.	glowi			gms a
	a)	i)	Identify M.	(1 mark)
		ii)	Write the equation for the reaction.	(1 ½ mark)

		Cultar colourlass (198	(1 mark)
b)		State one use of the colourless gas	
	ii)	Write an equation for the reaction between the colourless gas and a	(1 ½ mark)
5. a)	i)	Define the term heat of combustion of a substance.	(1 mark)
	ii)	Write an equation for the complete combustion of ethane.	(1 ½ mark)
b)	20	en 448 cm ³ of ethane measured at standard temperature and pressure is xygen the heat produced raises the temperature of 100 g of water by 12 acity of water = $4.2 \text{ Jg}^{-1} ^{\circ}\text{C}^{-1}$ Calculate the heat of combustion of ethan	s completely burnt 2°C [specific heat ne. (2 ½ mark)
6 a)		fine the term neutralization reaction.	

)	 25.0 cm³ of 0.1M hydrochloric acid solution required 10.0 cm³ of sodium carbonal solution for complete reaction. i) Write an equation for the reaction between sodium carbonate and hy 	drochloric acid.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V. N. 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12
•••••	ii) Calculate the concentration of sodium carbonate in moldm ⁻³ .	(3 marks)
7.	Sulphur dioxide gas can be prepared in the laboratory by reacting hydrochloric aci	id with substance
	a) Name X.	(1 mark)
••••		
••••	Write an equation for the reaction between X and hydrochloric acid.	(1 ½ mark)
	iii) State conditions for the reaction in (ii) to take place.	(1 mark)
	b) Copper metal reacts with sulphuric acid evolving a colourless gas	
•••	i) Identify the colourless gas	(1 mark)
	ii) State the property of sulphuric acid illustrated in its reaction with	copper metal.
		\$ T

3.	Ammonia is produced on the industrial scale by the reversible reaction between hydrogen and nitrogen.										
	a) .	i)	Name the process by which ammonia is prepared.	(1 mark)							
		ii)	Write an equation for the reaction.	(1 ½ mark)							
•••••		iii)	State the conditions for the reaction to take place.	(3 marks)							
	b)	Calc	ulate the percentage of nitrogen in ammonium phosphate.	(1 mark)							
	A wh	nite pov y. X rea	vder X when heated decomposes evolving a colourless gas Y whit acts with dilute hydrochloric acid evolving Y. An aqueous solution that precipitate insoluble in excess sodium hydroxide.	ch turns lime water on containing cations in (1 mark)							
	+ , •	ii)	Name the actual anion in X	(1 mark)							
		iii)	Identify the possible cations in X.	(1 mark)							
•••••	b)	Write	e an equation for the reaction between one of the cations in a) iii								

10.	a)	i)	repared in the laboratory by reacting Zinc with hydrochloric acid, Write an equation for the reaction.	
		ii)	State the conditions for the reaction.	(1 mark)
	b)	How c	an the rate of the reaction be increased?	(1 mark)
			SECTION B (30 marks)	
Ans	wer any	two ques	stions from this section	
7.775				×
11.	a)	Hydro i) ii) iii) iv)	Name the other reagent used. State the condition for the reaction. Write an equation for the reaction. Sate how hydrogen chloride gas can be tested in the laboratory.	(1 mark) (1 mark) (1 ½ mark) (1 mark)
Sacratic States	b)	Hydro i) ii) iii)	ogen chloride reacts with iron filings to form solid X. Name solid X. Write an equation for the reaction. Draw a diagram to show how the reaction can be carried out.	(1 mark) (1 ½ mark) (2 ½ marks)
	c)	Solid	X was dissolved in water to form an aqueous solution. To the solution	was added
			State what was observed. Write ionic equation for the reaction(s) that took place. State what would be observed and write an equation for the reaction when lead (II) nitrate is added to an aqueous solution of X.	(1 ½ mark) (1 ½ mark)
12.	A m whit	etal nitrat e on cool	te X when heated decomposes forming a yellow residue when hot; the ling. Reddish brown fumes Y and colourless gas Z are evolved.	residue turns
	a)	Identi	fy X, Z and Y.	(3marks)
	b)	Write i)	equation for the decomposition of X.	(1 ½ mark)
		ii)	the reaction of Y with water.	(1 ½ mark)

	c)		sidue was dissolved in dilute hydrochloric acid and to the resultant solution as ammonia drop wise until in excess.	was added
		i) ii)	State what was observed. Write equation for the reaction(s) that took place in (c) above.	(1 mark) (3 marks)
	d)	Descri	be how the residue can be used to prepare hydrated Zinc sulphate.	(5 marks)
13.	a)	i). ii)	Explain the term addition polymerization. Name the natural polymer and one synthetic polymer formed by addition	(2 marks)
		iii)	polymerization. State one limitation of synthetic polymers.	(2 marks) (1 mark)
	b)		ic compound A contains 66.7% carbon, 13% hydrogen, the rest being oxyg n vaporization occupied 224 cm^3 at s.t.p.	en. 0.46 g
		i) ii)		(2 ½ mark) (2 ½ mark)
3	c) ,	Descri	be how A can be prepared from millet flour.	(5 marks)
14.	a) .	Name compo	a reagent that can be used to distinguish between each of the following pai ounds / ions. In each case state what will be observed.	
	e	i)	SO_4^{2-} (aq) and CO_3^{2-} (aq).	(2 ½ mark)
		ii)	SO_4^{2-} (aq) and CO_3^{2-} (aq). C_2H_6 and C_2H_4	(2 ½ mark)
· · · · · · · · · · · · · · · · · · ·	,,b)	i) ii) iii)	carbon dioxide gas was bubbled into an aqueous solution of calcium hydrestate what was observed. Write equations for the reactions that took place. Burning magnesium was plunged into a gas jar of carbondioxide. State we observed and write an equation for the reaction.	(1 mark) (3 marks) hat was
	c)		What is an ore?	
*,		ii)	Name two ores from which iron can be extracted. Write an equation leading to the formation of iron in the blast furnace. (1	(1 mark) (1 mark) ½ marks)
į, i	, et		END	٠,

END

Name	Signature
School	Index No

545/2 CHEMISTRY Paper 2 July /August 2012 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES

- Section A consists of 10 structured questions. Answer all questions in this section.
- Answers to these questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this section.
- Answers to section B must be written on the answer sheet/booklet and stapled at the back of the question paper.
- Show all your working clearly in both sections.

[1F = 96500C, C = 12, H = 1, O = 16,Na = 23, Ca = 40, Molar gas volume at s.t.p = $22.4dm^3$]

1 2 3 4 5 6 7 8 9 10 11 12 13 14						e only	r's us	amine	For ex						
	Total	14	13	12	11	10	9	8	7	6	5	4	3	. 2	1
			110			1				33 E			10		-3

© WAKISSHA Joint Mock Examinations 2012

SECTION A (50 MARKS)

Answer all questions in this section

· · · · · ·		(1mark)
(b)	State whether the following are physical or chemical chang	
	(i) Heating Iodine	(Imark)
	(ii) Heating a piece of Magnesium ribbon in air.	(Imark)
	A PARTICULAR CONTROL OF THE CONTROL	(¹ /2mark)
(c)	State what was observed when Iron (III) chloride was heated	d (Imark)
8		
(a)	Steam was passed over heated magnesium ribbon in a tube, (i) State what was observed	(Imark)
	(ii) Write an equation for the reaction that took place.	
•		
(b)	The gaseous product formed in (a) was dried and passed over	er heated
(-)	Lead (II) oxide in an ignition tube.	15.
	(i) State what was observed	(lmark)
	(ii) Write an equation for the reaction that took place.	
1		

3.	(a)	Ammonia when mixed with oxygen and passed over neuroscatalyst, steam and gas x were formed.	(1mark
		(i) Name gas X	
		(ii) Write equation for the reaction leading to the formation	of gas X. (1 ¹ /2mark)
			(1 /2mark)
	(b)	(i) State what is observed when excess ammonia is lowered i of chlorine.	nto a gas jar (Imark)
		(ii) Write equation for the reaction that took place.	
	2.2		
4.	(a)	Sodium Iodide solution was added to Lead (II) nitrate solution. (i) State what was observed.	(1mark)
		(ii) Write ionic equation for the reaction that took place.	$(1^l/_2mark)$
			••••••
	(b)	Chlorine gas was bubbled through the reaction mixture in 4(a) (i) State what was observed.	(1mark)
	•		
		(ii) Write equation for the reaction that took place.	S
<i>5 (</i>		WI 134 CG	
5. (a)	When 1.34g of Copper was heated in air, 1.68g of an oxide was a Calculate the emperical formula of the oxide. ($Cu = 63.5 O = 63$	16)
			201-00
(1	- > -		
(1		To the oxide formed in 5(a) was added dilute hydrochloric acid.	
		(i) State what was observed	(lmark)
			••••••
		© WAKISSHA Joint Mock Examinations 2012	Turn Over

7	write equation for the reaction that took place.	$(1^{1}/_{2}mark)$
•••		
(a) W io (i)	Then ammonia gas was bubbled through a solution containing Zens, a white precipitate was formed which later dissolved. Write equation for the reaction leading to the formation of the	1. Y
e	precipitate.	$(1^l/_2mark)$
Ÿ		
(i	 ii) Identify the cation in the solution formed when the precipital dissolved. 	te (1mark)
(b) S	State two ways in which the white precipitate can be obtained from colourless Solution.	om the (1mark)
7) 8		i
7. (a)	What is meant by the term enthalpy of combustion?	(2marks)
	•••••••••••••••••••••••••••••••••••••••	

(b) ·	The enthalpy of combustion of methanol (CH ₃ OH) is 715 KJ/mo of methanol in a lamp is used to heat 250cm ³ of water at 25 ⁰ C. It maximum temperature attained by the water after heating (Densi 1g/cm ³ , specific heat capacity of water = 4.2Jg ⁻¹ K ⁻¹ , Rmm of me	ole. 8grams Determine the
		.,

8. (a)	Zinc carbonate was strongly heated in a test tube until there was further change.	no
	(i) State what was observed.	(Imark)
	:20.2	

	(ii) Write equation for the reaction that took place.	
(b)	To the residue in 8(a) was added dilute hydrochloric acid s	olution.
*:	(i) State what was observed.	(1mark)
	(ii) Write ionic equation for the reaction that took place.	(1½mark)
9. (a)	Oxygen can be prepared in the laboratory from hydrogen per substance W. Identify substance W and state its role	oxide and (2marks)
(b)	Potassium chlorate decomposes on heating to give oxygen accomposes	cording to
	the following equation.	•
	$2KCIO_{3(s)}$ heat $2KCI_{(s)} + 3O_{2(g)}$	
	(i) Calculate the volume of oxygen produced at room temper $10.6g$ of Potassium chlorate was heated. (K = 39, CI = 35)	
40	1 mole of a gas at r.t.p occupies 24dm ³)	(3marks)
	i mote of a gas at the first a transfer a	
	·	
41		
10. (a)	(i) Name one substance which when reacted with dilute sulph	uric acid
()	can produce sulphur dioxide.	(1mark
	(ii) Write equation for the reaction leading to the formation of	
	dioxide.	(1½mark)
T		dirimina z
- 9		
4		Turn Over
	© WAKISSHA Joint Mock Examinations 2012	5

	sulphur dioxide.	(Imark)
1000		
	State what is observed when the named reagent is used.	(1mark)
	······································	
(c) Sta	te the property of sulphur dioxide demonstrated in 10(b) abo	ove.
(0) 314		(½mark)
	SECTION B: (30 MARKS)	
	Answer any two questions from this section.	
. (a) (i)	State what is meant by the term soap?	(2marks)
(ii)	Briefly describe how a dry sample of soap flakes can be prepared in the laboratory.	(4 ¹ / ₂ marks)
with	vater sample X was boiled and on cooling was tested by shall hak nown volume of soap solution. A greasy scum and a clo	king it oudy
solu (i)	state what is meant by scum?	$(1^l/_2 mark)$
(ii)	Write an ionic equation for the reaction leading to the formation of scum.	(1 ¹ / ₂ mark)
(c) (i)	Name one compound that can be used to stop scum format in the water sample X.	ion (Imark,
(ii)	Write equation for the reaction that would take place when compound named in C (i) is used.	the $(1^l/_2 mark)$
(d) Des	scribe how soap can remove grease from fabrics when wash	ed. (1¹/₂mark

- 12. (a) (i) Describe how a dry sample of hydrogen chloride gas can be prepared in the laboratory. (Diagram not required) (4¹/₂marks)
 - (b) Draw a well labeled diagram to show that hydrogen chloride gas is highly soluble in water. (2½ marks)
 - (c) Using equations explain why when hydrogen chloride gas was bubbled into silver nitrate solution, a white precipitate Q was formed.

 Q dissolved in ammonia to form a colourless solution.

 (4¹/₂marks)
 - (d) The table below shows the variation in solubility of hydrogen chloride with temperature.

Temperature ⁰ C	0	30	40	50	60
Solubility of HCI in g/L of water	824	672	632	596	560

- (i) Plot a solubility curve of hydrogen chloride in g/litre against temperature.

 (4¹/₂marks)
 - (ii) From your graph determine the solubility of hydrogen chloride at 20°C (½ mark)
- 13.(a) Describe how dry crystals of Lead (II) nitrate can be prepared in the laboratory from Lead (II) oxide.

 (4¹/₂marks)
 - (b) State what would be observed when to an aqueous solution of Lead (II) nitrate was added.
 - (i) Sodium chloride solution. (1/2 mark)
 - (ii) Zinc powder. (½ mark)
 - (c) (i) Write equation for the reaction that took place in b(i) $(1^{1}/2mark)$
 - (ii) Explain your answer in b (ii)

 (Your answer should include equation for the reaction) (4¹/₂marks)
 - (d) Lead (II) nitrate decomposes when heated according to the following equation.
 2Pb(NO₃)_{2(s)} → 2PbO_(s) + 4NO_{2(g)} + O2_(g) (2¹/₂marks)
 Calculate the total volume of the gaseous product formed at s.t.p when 3.31g of Lead (II) nitrate is decomposed. (Pb = 207, O = 16, N = 14, 1 mole of a gas occupies 22400cm³ at s.t.p)

Turn Over

© WAKISSHA Joint Mock Examinations 2012

- (e) Explain why during the preparation of Lead (II) sulphate, Lead (II) nitrate instead of Lead (II) oxide is reacted with sulphuric acid. (3marks)
- 14. (a) (i) State what is meant by rate of reaction? (1mark)
 - (ii) With the aid of a well labeled diagram, describe an experiment that can be carried out to determine the rate of production of carbon dioxide gas from calcium carbonate and hydro chloric acid.

(3marks)

(b) The table below shows the variation in mass of calcium carbonate with time when reacted with dilute hydro chloric acid.

Mass of CaCO _{3(g)}	84	64	49	27	11	9	8
Time (Min)	0	1	`2	4	. 7	8	9

- (i) Sketch a graph to show how the mass of calcium carbonate varies with time. (4marks)
- (c) From your graph determine,
 - (i) The rate of reaction at 3 minutes. (2marks)
 - (ii) The time taken for half of the calcium carbonate to react. (Imark)
- (d) State at least two ways in which the rate of production of carbon dioxide can be increased. (2marks)

END

Name	Centre/Index No	••••
Signature		

545/2 CHEMISTRY PAPER 2 July/August 2009 2 hours

WAKISSHA JOINT MOCK EXAMINATIONS Uganda Certificate of Education

CHEMISTRY Paper 2

2 Hours

Instructions to candidates

- Attempt all questions in section A and Two questions from section B.
- · Answers to section A must be written in the spaces provided.
- Non programmable scientific calculators may be used.
- In both sections, all working must be clearly shown.

$$(C=12, O=16, H=1, Zn=65, S=32, Cu = 64)$$

Molar gas volume at room temperature = 24lMolar gas volume at s.t.p = 22.4l

					ŀ	or e	cami	ner's	use o	only				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

Turn Over

Section A Attempt all questions in this section

۱.	(a)	Water (i)	was added to solid sodium peroxide State what was observed	(1mark)
		(ii)	Write an equation for the reaction	(1½ mark)
		(iii)	State one use of the gaseous product	(1mark)
	(b)	The	solution from (a) above was added to magnesium nitrate so te an equation for the reaction	olution. (1½ mark)
2.	(a)		ydrocarbon Z contains 85.7% carbon. Determine the empir	
	3430			*******
	(t	o) 2. (i	8g of Z vaporization occupied 2.4dm ³ at room temperature.) Determine the molecule formula of Z	(3 marks)

	i	i) Write the structure of Z	(1 mark)						
3.	State the method of separation and the principle behind the method of sepa								
	(a)	ollowing mixtures. Iron filing and sulphur	(½ mark)						
		Method Principle	(Imark)						
	(b)	Water and ethanol	(½ mark)						
		MethodPrinciple	(Illiaik)						
20	2.7	Gas X was passed over heated iron filing. Black crystal							
4.	(a)	(i) Name the gas	(Imark)						
*		(ii) Write an equation for the reaction	(1 ½ mark)						
	(b)	The black crystals were dissolved in water and to the rewas added sodium hydroxide solution.							
	_	(i) State what was observed	(1mark)						
	30.7.7.7.	ii) Write ironic equation for the reaction	(1 ½ mark)						
5.	(a)	Define the term electrolyte	(2 mark)						
	•••••								

		to adjum hydroxide	solution for 60
	(b) A cui	rrent of 0.2A was passed through sodium hydroxide attes. Calculate the volume of gas evolved at the anodo	e (4 ½ mark)

6.	Concentrate product wa	ed sulphuric acid was added to heated copper metal and a passed into a wash bottle containing liquid X.	nd the gaseous
	(a) Sta		(1 mark)
	(i)	what was observed	
	. (ii)) the name of X	(1 ½ mark)
	(iii	i) The role of X	(1 mark)

	1-7	rite equation for the reaction	(1 ½ mark)

7.		colourless gas X is passed over heated copper(II) Oxide an inert gas Z is given off.	e a brown solid is
	(a) N	lame the gasses X and Z	(1mark)
	' X	7:	
	Z	y 	
	(b) W	Write the equation for the reaction between X and copp	er(II) oxide
			(1 ½ mark)

	(c)	State two uses of X	(2 marks)
8.	(a) ' 	Define the term standard solution	(2 marks)
	(b)	2.4g of magnesium metal reacted completely with 25cm ³ of chydrochloric acid. Calculate the concentration of hydrochloric	lilute
10	*****		
	•••••		
		•••••	
		······································	

	• • • • • • • • • • • • • • • • • • • •		
	•••••	- 10 10 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
9. .,	(a)	Sketch a graph of hydrogen evolved with time when excess nadded o 100.0 cm ³ of a 1.0M sulphuric acid at room temperat	nagnesium is ure. (2 marks)
		······································	
	•••••		
	•••••		
	• • • • • •		
	••••		

	(b)	On the obtain (i)	e same graph in (a) above, sketch another graph that would be when magnesium is added to 100.0cm ³ of a 2.0M sulp State the factor that affects the rate of the chemical react investigated.	ld be . bhuric acid tion being (1 mark)		
		(ii)	Apart from the factor in c(i) above state one other factor affects rate of chemical reactions			
10.	The a (a)	tomic n (i)	umbers of elements X and Q are 11 and 17 respectively, stathe type of bond that is formed when X and Q combine			
		(ii)	the number of elections in the outer most shell of Win the compound formed in (i) above			
	(b)	(i)	the formula of: the sulphate of X	(1mark)		
F		(ii)	the ion formed by Q	(1mark)		
	(c) State whether the compound formed between X and Q conducts el					
		or not	t. Give a reason for your answer	(1mark)		
				•		

Section B

Attempt any Two questions from this section, begin each question on a fresh page.

11.	Two g	gasses X in air er	and W are described, X does not burn, fumes in monriched with oxygen, turns red in turns blue.	oist air. W					
	(a)	(1)	Identify and state the drying agent used for the labor preparation of X and W						
		7.512.523	State the reason why sulphuric acid can not be used	(2 mark) to dry W (1 mark)					
	(b)	White	constitute for the left and						
	(c)	Write	equation for the laboratory preparation of X and W an equation for the combustion of W	(3marks)					
	(d)		bubbled into aqueous silver nitrate solution	(1 ½ mark)					
	(-)	(i)	State what was observed	(1mark)					
		(ii)	Write equation for the reaction (s) that took place	(2marks)					
	(e)	W was	s dissolved in water to form an aqueous solution. The to zinc sulphate solution drop wise until in excess.	solution was					
A		(i)	State what was observed	(1½ mark)					
		(ii)	Write equation(s) for the reaction(s) that took place	(3 marks)					
		100	and the second s	Sea or server or server					
12.	(a)	Define	e the term enthalpy of neutralization	(2 marks)					
	(b)	Descr	ibe how the heat of neutralization of hydrochloric acid	d by sodium					
		hydro	hydroxide can be determined in the laboratory. Show how the heat of						
		neutra	dization can be obtained from experimental results.	(8marks)					
	(c)	(i)	Write an equation for the reaction between sulphuri-						
			sodium hydroxide	(1½ marks)					
		(ii)	When 4.6g of ethanol, C ₂ H ₅ OH was burnt the heat	produced					
			raised the temperature of 250g of water from 28.5 to						
			Calculate the enthalpy of combustion of ethanol	(3 ½ mark)					
13.	(a)	Name							
15.	()	(i)	two metals that can be extracted by electrolysis	(2marks)					
		(ii)	two ores from which iron can be extracted	(2marks)					
- E	(b)	0.000							
		(b) Describe the process by which iron can be extracted from the (No diagram required). Write equations for the chemical residual.							
		invol		(8marks)					
	(c)	(i)	Define the alloy	(1mark)					
	(-)	(ii)	Copy and complete the following table by stating the	ne composition					
			of the following alloys	(2marks)					
		6	227 129						
			Alloy Composition						
			Solder						
			Steel						

14	(a)	Ethene can be prepared from ethanol by reacting ethanol with sulphuric			
		acid. St (i) (ii) (iii)	the conditions for the reaction the property of sulphruric acid being demonstrated the test for ethene and the observations made	(2marks) (1mark) (2marks)	
	(b)	Ethene was converted into the structure ——CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Name:			
		(i)	the process by which the structure is formed	(1mark)	
		(ii)	the structure	(Imark)	
		(iii)	state one use the structure	(1mark)	
	(c)	Describe how you would prepare dry sample of copper(II) sulphate crystals in the laboratory. Write an equation for the reaction that takes place. (7marks)			

END